Structural Variant Calling in Genomes Using Deep Learning

1805010 - Anwarul Bashir Shuaib 1805036 - Abu Humayed Azim Fahmid

Supervisor: **Dr. Atif Hasan Rahman**CSE, BUET

Introduction

The Human Genome

- Approximately 3 billion base pairs
- 20,000-25,000 genes

The Human Genome

- Millions of genetic variations
 - Single Nucleotide Variations (SNV), small indels, structural variations
- SNVs are the most common
- But SVs affect more base pairs
 - 3-8x more (Catanach et al., 2019; Hämälä et al., 2021; Mérot et al., 2020)

Ref: TTAGGGTTAGGGTTAGGGCTT

TTAGGGTTAGGCTTAGGGCTT

INDEL

TTAGGGTTAGGG

Structural Variations

- Affect large genomic regions
- Alterations in the sequence (50bp to several kbp)

- Amyotrophic Lateral Sclerosis (ALS) / Lou Gehrig's disease
- Affects nerve cells in the brain and the spinal cord

- Amyotrophic Lateral Sclerosis (ALS) / Lou Gehrig's disease
- Affects nerve cells in the brain and the spinal cord
 - Repeat expansion in C9orf72 (Ahmad et al. 2022)
 - Insertion in ERBB4
 - Inversion in VCP gene

- Chronic Myeloid Leukemia
 - Philadelphia chromosome (BCR-ABL1 fusion)

- Chronic Myeloid Leukemia
 - Philadelphia chromosome (BCR-ABL1 fusion)
- DiGeorge Syndrome
 - Deletion in chr22
 - Heart defects, immune system problems
- Schizophrenia
 - Deletion in chr1q and chr15q
- And many more (Stankiewicz, Paweł, Lupski 2010)

Poorly mapped regions of the genome

Poorly mapped regions of the genome

- Poorly mapped regions of the genome
 - Challenging to map uniquely with short-read sequences.
 - Long-read sequencing showing hope
 - Pacific Biosciences, Oxford Nanopore

- Poorly mapped regions of the genome
 - Challenging to map uniquely with short-read sequences.
 - Long-read sequencing showing hope
 - Pacific Biosciences, Oxford Nanopore
- SVs spanning multiple reads

Short Read vs Long Read Sequencing

• Repetitive regions

Repetitive regions

• Repetitive regions

- Chimeric reads
 - Single sequencing read aligns to multiple positions

- Chimeric reads
 - Single sequencing read aligns to multiple positions

- Chimeric reads
 - Single sequencing read aligns to multiple positions

- Chimeric reads
 - Single sequencing read aligns to multiple positions

- Chimeric reads
 - Single sequencing read aligns to multiple positions

- Chimeric reads
 - Single sequencing read aligns to multiple positions

Deletion of reference

23

- Chimeric reads
 - Single sequencing read aligns to multiple positions

- Chimeric reads
 - Single sequencing read aligns to multiple positions

Deletion

Insertion

Deletion

Deletion

Deletion

Insertion

Deletion

Insertion

Related Works

Related Works

Variant Calling Algorithms

Related Works

Methodology

$$D = \alpha \cdot n_{\text{mis}} + \beta \cdot n_{\text{ins}} + \gamma \cdot n_{\text{del}} \quad (\alpha = 2, \beta = 1, \gamma = 1)$$

$$D_{\text{norm}} = \frac{D}{L_1 + L_2}$$

$$S_{\text{norm}} = 1 - D_{\text{norm}}$$

Matrix Features

• 26 Initial features, 128 width

Matrix Features

- 26 Initial features, 128 width
- S₁,I₁,D₁: Variant length
- R_E: Reference support
- S_s, I_s, D_s : Variant support
- A_F, C_F, T_F, G_F : Nucleotide count
- I_F, D_F: Indel breakpoint count
- *_F: Total deletes observed

Matrix Features

- Two newly added features:
 - a. SC_F: Soft clip count for forward strand
 - b. SC_R : Soft clip count for reverse strand

For soft clipped regions, it is not possible to categorize regions as insertion or deletion accurately from the aligned reads.

The variant is given a generic category (insertion) to pass to our model.

Then, we consolidate them.

Finally, the variant matrix is generated.

Overview of the Model

Parameters: 2.7M

Learning rate: 0.0001

Train dataset	chr 1 - 14
Test dataset	chr 15 - 22

- Train-test ratio ≈ 80 / 20
- Epochs: 100

Model Training

Model Training

Model Training

Overview

Overview

Dataset

- HG002_35x_HiFi_2_GRCh37
 - HG002 is a **human genome sample** from the Genome in a Bottle (GIAB) project.
 - The reads are generated by **PacBio HiFi (High-Fidelity)** sequencing technology.
 - Genome Reference Consortium Human Build 37 (GRCh37) is a specific version of the **human reference genome**, released in February 2009.
 - The reads are aligned by minimap2 with 35x coverage.

HG002 Tier 1 Benchmark

- Tier 1 refers to the highest confidence benchmark regions for structural variant (SV) calls within a genomic dataset (Zook et al., 2020).
- HG002 Tier 1 refers to the high-confidence structural variant (SV) benchmark set for the HG002 genome.
- It spans 2.51 Gbp and includes 5,262 insertions and 4,095 deletions.
- We are using the version 0.6

CMRG (Curated Medically Relevant Genes) Benchmark

- CMRG benchmark is a standard set of genetic variants for challenging, medically relevant genes (Wagner et al., 2022).
- It characterizes 273 of the 395 challenging medically relevant genes (repetitive and complex).
- ❖ It reports over 17,000 SNVs, 3,600 indels and 200 other SVs for human genome reference GRCh37 across HG002.
- We are using the version 1.0

Truvari

- Toolkit for Benchmarking SVs in Variant Call Format (VCF) files (English et al., 2022).
- It compares two VCF files to provide performance metrics:
 - True Positive, False Positive and False negative count
 - Precision
 - Recall
 - F1 Score
- We are using the version 4.2.0

Results

Impact of the Model on SV Detection

Comparison of PepperSV on HG002_SVs_Tier1

Impact of the Model on SV Detection

Comparison of PepperSV on HG002_GRCh37_CMRG_SV

SV Callers Used for Comparison

Benchmarking is done on Chromosomes 15-22.

Comparison of SV Tools

Comparison of SV Tools: Recall

Comparison of SV Tools

Comparison of SV Tools: Precision

Comparison of SV Tools

Comparison of SV Tools: F1 Score

Discussion and Future Work

Discussion

- Our approach is the first-of-its-kind Deep Learning-based SV caller.
- We consolidate variants based on normalized indel similarity.
 - Keep dissimilar variants separate, merge similar variants together.
- We detect additional breakpoints from soft-clipped reads.

Discussion

Our method works very well in challenging and complex regions as well (CMRG Benchmark).

Future Work

- Fixing the limitations and challenges.
- Training a CNN based model.
- Training the model with different types of read sequences.

References

- Al Khleifat, Ahmad, et al. "Structural variation analysis of 6,500 whole genome sequences in amyotrophic lateral sclerosis." NPJ genomic medicine 7.1 (2022): 8.
- 2. Stankiewicz, Paweł, and James R. Lupski. "Structural variation in the human genome and its role in disease." Annual review of medicine 61 (2010): 437-455.
- 3. Zook, Justin M., et al. "A robust benchmark for detection of germline large deletions and insertions." Nature biotechnology 38.11 (2020): 1347-1355.
- 4. Wagner, Justin, et al. "Curated variation benchmarks for challenging medically relevant autosomal genes." Nature biotechnology 40.5 (2022): 672-680.
- 5. English, Adam C., et al. "Truvari: refined structural variant comparison preserves allelic diversity." Genome Biology 23.1 (2022): 271.