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Introduction
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The Human Genome
● Approximately 3 billion base pairs

● 20,000-25,000 genes
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The Human Genome
● Millions of genetic variations

○ Single Nucleotide Variations (SNV), small 
indels, structural variations

● SNVs are the most common
● But SVs affect more base pairs

○ 3-8x more (Catanach et al., 2019; Hämälä et 
al., 2021; Mérot et al., 2020)
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Structural Variations
● Affect large genomic regions

● Alterations in the sequence (50bp to several kbp)
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Significance of SVs
● Amyotrophic Lateral Sclerosis (ALS) / Lou Gehrig’s disease

● Affects nerve cells in the brain and the spinal cord
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Significance of SVs
● Amyotrophic Lateral Sclerosis (ALS) / Lou Gehrig’s disease

● Affects nerve cells in the brain and the spinal cord
○ Repeat expansion in C9orf72 (Ahmad et al. 2022)

○ Insertion in ERBB4 

○ Inversion in VCP gene
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Significance of SVs
● Chronic Myeloid Leukemia

○ Philadelphia chromosome ( BCR-ABL1 fusion )
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Significance of SVs
● Chronic Myeloid Leukemia

○ Philadelphia chromosome ( BCR-ABL1 fusion )

● DiGeorge Syndrome
○ Deletion in chr22

○ Heart defects, immune system problems

● Schizophrenia
○ Deletion in chr1q and chr15q

● And many more (Stankiewicz, Paweł, Lupski 2010)
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Difficulties In Finding SVs
● Poorly mapped regions of the genome
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Difficulties In Finding SVs
● Poorly mapped regions of the genome

○ Challenging to map uniquely with short-read sequences.

○ Long-read sequencing showing hope

○ Pacific Biosciences, Oxford Nanopore
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Difficulties In Finding SVs
● Poorly mapped regions of the genome

○ Challenging to map uniquely with short-read sequences.

○ Long-read sequencing showing hope

○ Pacific Biosciences, Oxford Nanopore

● SVs spanning multiple reads
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Short Read vs Long Read Sequencing
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Difficulties In Finding SVs
● Repetitive regions
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Difficulties In Finding SVs
● Repetitive regions
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Difficulties In Finding SVs
● Chimeric reads

○ Single sequencing read aligns to multiple positions 
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Difficulties In Finding SVs
● Chimeric reads

○ Single sequencing read aligns to multiple positions 
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Difficulties In Finding SVs
● Chimeric reads

○ Single sequencing read aligns to multiple positions 

● Soft clipped read
○ “Soft” → bases are present, but not 

aligned to reference
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Difficulties In Finding SVs
● Chimeric reads

○ Single sequencing read aligns to multiple positions 

Deletion of reference Insertion of new sequence 25



Difficulties In Finding SVs
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Difficulties In Finding SVs

Deletion Insertion
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Difficulties In Finding SVs

Deletion Insertion

Soft clipped reads
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SVs Under Consideration

29



SVs Under Consideration Deletion

30



SVs Under Consideration Deletion
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SVs Under Consideration Deletion

Insertion
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SVs Under Consideration Deletion

Insertion
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Related Works
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Related Works
Variant Calling 

Algorithms

SNVs and Small 
Indels Structural Variants

● DeepVariant

● PEPPER-MARGIN-DV

● CuteSV, Sniffles, Delly

● Dysgu 

Extend for structural variants
( PEPPER-SV )
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Methodology
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Overview

Genome vial
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Overview

Genome vial

Sequencing

minimap2, pbmm

Alignment file Create chunks

Find 
breakpoints

1. Consolidate “similar” variants

2. Breakpoints from soft clipped reads
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Candidate Variant Matrix Generation
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Candidate Variant Matrix Generation

Properly aligned Poorly aligned 
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Candidate Variant Matrix Generation
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Candidate Variant Matrix Generation
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Candidate Variant Matrix Generation
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Candidate Variant Matrix Generation
Search window
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Candidate Variant Matrix Generation
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Candidate Variant Matrix Generation
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Candidate Variant Matrix Generation
Variant support counts
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Candidate Variant Matrix Generation
Variant frequency threshold
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Candidate Variant Matrix Generation
Variant frequency threshold

Breakpoints
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Candidate Variant Matrix Generation
Variant frequency threshold

Breakpoints
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Candidate Variant Matrix Generation
Variant frequency threshold

Breakpoints

Assign labels during training
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Candidate Variant Matrix Generation
Variant frequency threshold

Breakpoints
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Candidate Variant Matrix Generation
Variant frequency threshold

Breakpoints

64 64
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Candidate Variant Matrix Generation

Properly aligned Poorly aligned 
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Candidate Variant Matrix Generation

73



Candidate Variant Matrix Generation
Variant frequency falls below threshold
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Candidate Variant Matrix Generation
Variant frequency falls below threshold

Consolidate variants based on 
normalized indel similarity
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Candidate Variant Matrix Generation
Variant frequency falls below threshold

Consolidate variants based on 
normalized indel similarity
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Candidate Variant Matrix Generation
Variant frequency falls below threshold

Consolidate variants based on 
normalized indel similarity

Candidate windows on breakpoints
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Matrix Features
● 26 Initial features, 128 width
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Matrix Features
● 26 Initial features, 128 width

●  SL,IL,DL: Variant length

● RF: Reference support

● SS,IS,DS: Variant support

● AF,CF,TF,GF: Nucleotide count

● IF, DF: Indel breakpoint count

● *F: Total deletes observed
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Matrix Features
● Two newly added features:

a. SCF: Soft clip count for forward strand

b. SCR: Soft clip count for reverse strand
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Variants from Soft Clipped Regions for Model Training

This alignment misrepresented a 
deletion as soft clipped region.

This alignment misrepresented an 
insertion as soft clipped region.
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Variants from Soft Clipped Regions for Model Training

We take a small window around the 
soft clip.

Then the category information is 
taken from the truth VCF.
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Variants from Soft Clipped Regions for Model Training
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Variants from Soft Clipped Regions for Model Training

A small window around the soft clip is taken.
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Variants from Soft Clipped Regions for Model Training

The variants are consolidated to the first one.
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Variants from Soft Clipped Regions for Model Training

Finally, the variant matrix is generated.
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Variants from Soft Clipped Regions for Prediction

For soft clipped regions, it is not possible to categorize regions as 
insertion or deletion accurately from the aligned reads.
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Variants from Soft Clipped Regions for Prediction

The variant is given a generic category 
(insertion) to pass to our model.

91



Variants from Soft Clipped Regions for Prediction

Then, we consolidate them.
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Variants from Soft Clipped Regions for Prediction

Finally, the variant matrix is generated.
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Overview of the Model
● Parameters: 2.7M

● Learning rate: 0.0001

● Train-test ratio ≈ 80 / 20

● Epochs: 100

Train dataset chr 1 - 14

Test dataset chr 15 - 22

LSTM Encoder

LSTM Decoder

Linear

Dropout

x5

Output
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Model Training
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Model Training
128x28

Pileup summary

Pileup summary

Label: 
Insertion /
Deletion

Label: 
Homozygous / 
Heterozygous
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Model Training
128x28

Pileup summary

Pileup summary

Label: 
Insertion /
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Genotype predictor

Variant predictor
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Overview

Genome vial

Sequencing

minimap2, pbmm

Alignment file Create chunks

Find 
breakpoints

Pileup 
matrices

LSTM ClassifierPredict variant label 
and genotypeVariant calls

Variant Prediction Step
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Variant Prediction
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Variant Prediction
128x28

Pileup summary

Pileup summary
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Variant Prediction
128x28

Pileup summary

Pileup summary

Genotype predictor

Variant predictor
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Variant Prediction
128x28

Pileup summary

Pileup summary

Genotype predictor

Variant predictor

Insertion / Deletion

Update variant 
category and genotypeCreate final VCF

HOMOZYGOUS/
HETEROZYGOUS
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Dataset
❖ HG002_35x_HiFi_2_GRCh37

■ HG002 is a human genome sample from the Genome in a Bottle (GIAB) project.

■ The reads are generated by PacBio HiFi (High-Fidelity) sequencing technology.

■ Genome Reference Consortium Human Build 37 (GRCh37) is a specific version of the human 
reference genome, released in February 2009. 

■ The reads are aligned by minimap2 with 35x coverage.
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HG002 Tier 1 Benchmark
❖ Tier 1 refers to the highest confidence benchmark regions for structural 

variant (SV) calls within a genomic dataset (Zook et al., 2020).

❖ HG002 Tier 1 refers to the high-confidence structural variant (SV) 
benchmark set for the HG002 genome.

❖ It  spans 2.51 Gbp and includes 5,262 insertions and 4,095 deletions.

❖ We are using the version 0.6
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CMRG (Curated Medically Relevant Genes) Benchmark
❖ CMRG benchmark is a standard set of genetic variants for challenging, 

medically relevant genes (Wagner et al., 2022).

❖  It characterizes 273 of the 395 challenging medically relevant genes 
(repetitive and complex).

❖ It reports over 17,000 SNVs, 3,600 indels and 200 other SVs for human 
genome reference GRCh37 across HG002.

❖ We are using the version 1.0
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Benchmarking Process

High Confidence Regions

Benchmark 
Variant Calls
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Benchmarking Process
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Truvari
❖ Toolkit for Benchmarking SVs in Variant Call Format 

(VCF) files (English et al., 2022).

❖ It compares two VCF files to provide performance 
metrics:

■ True Positive, False Positive and False negative count

■ Precision

■ Recall

■ F1 Score

❖ We are using the version 4.2.0
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Results
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Impact of the Model on SV Detection
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Impact of the Model on SV Detection
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SV Callers Used for Comparison
SV Callers for Comparison

Sniffles CuteSV Delly Dysgu PEPPER-SV

Benchmarking is done on Chromosomes 15-22.
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Comparison of SV Tools
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Comparison of SV Tools
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Comparison of SV Tools
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Discussion and Future Work
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Discussion
❖ Our approach is the first-of-its-kind Deep Learning-based SV caller.

❖ We consolidate variants based on normalized indel similarity.

■ Keep dissimilar variants separate, merge similar variants together.

❖ We detect additional breakpoints from soft-clipped reads.
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Discussion
❖ Our method works very well in challenging and complex regions as well 

(CMRG Benchmark).

❖ PEPPER-SV has performed very well in Recall and F1 score metric.

❖ However, there is potential for improving the precision.
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Limitations and Challenges

Fragmented Deletion Scenario A Deletion of Length 52
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Window Limitation Misclassification
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Limitations and Challenges
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Future Work
❖ Fixing the limitations and challenges.

❖ Training a CNN based model.

❖ Training the model with different types of read sequences.
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