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ABSTRACT

The human genome is a vast and complex blueprint, consisting of approximately 3.2 bil-

lion base pairs that encode around 20,000 genes. Variations in this genetic code express in

several forms, including single nucleotide variations (SNVs), small insertions and deletions

(indels), and more substantial structural variants (SVs), which are defined as genomic rear-

rangements larger than 50 base pairs. The exploration of SVs in the genome is pivotal for

understanding genetic diversity and disease mechanisms. However, the inherent complex-

ity of structural variants poses considerable challenges for accurate detection, particularly

with traditional short-read sequencing technologies. Long-read sequencing has emerged

as a promising alternative, offering enhanced resolution and the ability to span larger ge-

nomic regions. In this study, we introduce a novel deep learning-enhanced methodology

that builds upon the PEPPER-Margin-DeepVariant framework, specifically tailored for the

detection of structural variants using long-read sequencing data. Our approach represents

the first-of-its-kind integration of deep learning for the detection of structural variants. By

clustering similar structural variants based on normalized indel similarity score and analyz-

ing soft clips within alignment files, we enhance the detection signals for structural variants

that are often missed by conventional methods. We evaluate our methodology against state-

of-the-art SV calling methods in the Challenging Medically Relevant Genes (CMRG) and

HG002 Tier1 Benchmark datasets, demonstrating superior performance with an F1 score of

98.87% on the CMRG dataset, and a highly competitive F1 score of 96.66% on the HG002

dataset. Our results indicate that our deep learning-enhanced methodology improves the

detection of structural variants in long-read sequencing data, providing a valuable resource

for the genomics community.

ix



Chapter 1

Introduction

The human genome, comprising approximately 3 billion base pairs, contains around 20,000-
25,000 genes. It is also home to millions of genetic variations, including single nucleotide vari-
ations (SNVs), small insertions and deletions (indels), and structural variations (SVs). SNVs
are the most common type of genetic variation, with over 100 million identified in the human
genome. Indels, typically involving a few base pairs, are also numerous. However, structural
variations, which involve larger segments of DNA (typically over 50 base pairs), account for a
significant portion of genetic diversity and can have profound impacts on phenotypes and dis-
eases. Researches have shown that SVs affect around 3 to 8 times more base pairs than SNVs
and indels combined, making them crucial for understanding human genetics and disease mech-
anisms [1].

SVs are associated with various diseases, including cancer, developmental disorders, and neu-
ropsychiatric conditions. For example, Amyotrophic Lateral Sclerosis (ALS) is a neurodegen-
erative disease characterized by the progressive loss of motor neurons. This causes the muscles
to weaken and atrophy, leading to difficulty in speaking, swallowing, and eventually breathing.
According to a recent study, repeat expansion in the C9orf72 gene, insertion in the ERBB4
gene and inversion in the VCP gene are directly responsible for this fatal disease [2]. More-
over, fusion of two genes can lead to the formation of a chimeric gene, which can cause cancer.
For instance, Chronic Myeloid Leukemia is a type of bone marrow cancer that results from a
translocation between chromosomes 9 and 22, leading to the formation of the BCR-ABL1 fu-
sion gene. This gene encodes a protein that promotes uncontrolled cell growth, leading to the
development of cancer. Additionally, diseases like DiGeorge Syndrome, Schitzophrenia, and
Autism Spectrum Disorder have been linked to SVs [3]. These examples underscore the impor-
tance of detecting SVs for understanding the genetic basis of diseases and developing effective
treatments.

Although SVs play a crucial role in human genetics and disease, detecting them accurately
remains challenging. The complexity of SVs, coupled with the limitations of short-read se-
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quencing technologies, has hindered precise SV detection. Many of the SVs reside in poorly
characterized regions of the human genome, which is difficult to map uniquely with short read
sequences. Moreover, in highly repetitive regions, SVs tend to disperse, weakening detection
signals and often causing many variants to go undetected. Traditional short-read sequencing
technologies, such as Illumina, generate reads that are typically 100-250 base pairs long. This
length is insufficient for accurately detecting SVs, especially large insertions and deletions. As
a result, SV detection tools based on short-read sequencing data often miss many SVs or pro-
duce false positives. Fortunately, recent advances in long-read sequencing methods like Pacific
Biosciences and Oxford Nanopore Technologies (ONT) are showing promise in this area.

In the field of genomics, considerable progress has been made in developing tools for detecting
genetic variants. For SNVs and small indels, deep learning-based tools like DeepVariant [4]
and PEPPER-Margin-DeepVariant [5] have shown exceptional performance, particularly with
long-read sequencing data, outperforming traditional methods. However, the detection of SVs
has largely relied on algorithmic approaches such as CuteSV [6], Delly [7], and Sniffles [8].
Only recently has the landscape begun to change with the introduction of Dysgu [9], a tool that
enhances SV detection by analyzing alignment gaps, discordant and supplementary mappings,
and utilizing machine learning for classifying variants.

Despite these advancements, the specific application of deep learning to SV calling has re-
mained largely unexplored. Motivated by the success of PEPPER-Margin-DeepVariant, we
adapt its framework to develop a novel deep learning-based pipeline tailored for robust and
efficient detection of structural variants. Our method aims to bridge the gap in the current
toolkit, aiming to overcome the existing limitations and enhance the SV detection in long-read
sequencing data. Some of our key contributions include:

1. Our approach represents the first-of-its-kind integration of deep learning techniques specif-
ically designed for SV detection.

2. We consolidate similar variants within repetitive regions using a normalized indel similar-
ity score. This approach improves the detection efficiency and reduces the false positive
rate in these repetitive genomic landscapes.

3. We utilize soft-clipped reads to extract SV signals, which are often overlooked in tradi-
tional analyses.

We evaluate our methodology against state-of-the-art SV calling methods in the Challenging
Medically Relevant Genes (CMRG) and HG002 Tier1 Benchmark datasets. Our approach
demonstrated superior performance, achieving an F1 score of 98.87% on the CMRG dataset
and a highly competitive F1 score of 96.66% on the HG002 dataset. These results underscore
the effectiveness of our deep learning-based approach in detecting SVs, particularly in chal-
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lenging genomic regions. We believe that our method will significantly advance the field of SV
detection and contribute to a better understanding of the genetic basis of diseases.

The rest of this thesis is organized as follows: Chapter 2 provides an overview of the background
information for our work, including sequencing technologies, various genomics file formats,
and some computational tools utilized in our research. In Chapter 3, we discuss existing works
on SV calling, focusing on traditional algorithm-based SV callers and machine learning-based
SV callers. Chapter 4 presents a detailed overview of the original PEPPER-Margin-DeepVariant
pipeline, our modifications to capture SVs, the model training process, variant prediction, and
benchmarking. The data collection procedure and benchmark files are explained in Chapter 5.
In Chapter 6, we present the results and evaluate the impact of variant refinement through our
model. Finally, Chapter 7 concludes our thesis by addressing current limitations and exploring
potential improvements for future work.



Chapter 2

Background

The study of the human genome has revolutionized our understanding of health, disease, and
evolution. Before we delve deeper into our thesis, it is essential to establish a proper foundation
in the fundamental concepts and technologies that drive modern genetic research. This chapter
serves as a primer, providing a clear overview of the technical terminology and methodologies
employed throughout this thesis.

We begin with an exploration of the human genome, discussing the roles of DNA and chro-
mosomes and the importance of the reference genome in comparative studies. Then we give
a brief overview of sequencing technologies that have paved the way for high-throughput ge-
nomics, highlighting the strengths and limitations of platforms like Illumina, HiFi, and Oxford
Nanopore.

Subsequent sections delve into the practical aspects of genomic data analysis, including the
critical regions of high-confidence data, the intricacies of alignments, and the interpretation of
matches, mismatches, and variants ranging from single nucleotide polymorphisms (SNPs) to
large structural variants (SVs). We also discuss the concept of haplotypes and their relevance in
determining genetic diversity and inheritance patterns.

An important part of our thesis, the Integrated Genomics Viewer (IGV), is introduced for visu-
alizing genomic data, allowing for an interactive exploration of alignments, variants, and other
genomic features. Finally, we discuss the various file formats used to represent genomic data,
including FASTA for reference genomes, FASTQ for sequence data, BAM/SAM for alignments,
and VCF for variants, providing a comprehensive guide to the data structures and formats that
underpin modern genomics research.

4



2.1. HUMAN GENOME 5

2.1 Human Genome

The human genome is the complete set of genetic information encoded in the DNA of our
cells. It contains all the instructions needed to build and maintain an organism, determining
everything from physical traits to susceptibility to diseases. This section provides an overview
of the fundamental elements of the human genome, including DNA, chromosomes, and the
reference genome, which serves as a standard for genomic comparisons.

2.1.1 DNA and Chromosomes

The human genome is composed of deoxyribonucleic acid (DNA), a double-stranded molecule
that carries the genetic instructions for life. DNA is made up of four nucleotide bases: adenine
(A), thymine (T), cytosine (C), and guanine (G). These bases pair up in specific combinations
(A-T and C-G) to form the rungs of the DNA ladder, with the sugar-phosphate backbone form-
ing the sides 2.2. This DNA is located in the nucleus of each cell, organized into structures
called chromosomes 2.1.

Figure 2.1: Human chromosome [10] Figure 2.2: Structure of DNA [11]

The structure of the DNA is directional, with the beginning named 5′ and the end named 3′. The
two strands of DNA are antiparallel, meaning they run in opposite directions. The enzymes that
replicate DNA read the template strand in the 3′ to 5′ direction, synthesizing the new strand in
the 5′ to 3′ direction [12].
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In human cells, DNA is organized into structures called chromosomes, which are long, thread-
like molecules that contain the genetic material. Humans have 23 pairs of chromosomes, with
one set inherited from each parent. These 23 pairs are collectively known as the human genome.
Of these, 22 pairs are autosomes, while the 23rd pair is the sex chromosome, that determines an
individual’s sexual identity. The chromosomes are named based on their size, with chromosome
1 being the largest and chromosome 22 being the smallest. The sex chromosomes are named X
and Y.

Why do we count the chromosomes by pairs? This is because humans are diploid organisms,
meaning they have two sets of chromosomes, one from each parent. Each pair of chromosomes
consists of one chromosome from the mother and one from the father, making a total of 46
chromosomes in a human cell. This diploid nature ensures genetic diversity and allows for the
inheritance of traits from both parents 2.3.

Figure 2.3: Human chromosome pair.

When we sequence the DNA of an individual, we are essentially reading the genetic code stored
in the chromosomes. However, since there are two copies of each chromosome, we need to
consider both copies when analyzing the data. This is where the concept of haplotypes comes
into play, as we will discuss later in this chapter.

2.1.2 Genes and Alleles

Genes are the functional units of the genome, responsible for encoding proteins which in turn
regulate various biological processes. Each gene consists of a specific sequence of nucleotide
bases that code for a particular protein. The human genome is estimated to contain around
20,000-25,000 genes, although the exact number is still a subject of ongoing research [13].
Genes are not evenly distributed across the genome but are clustered in regions known as gene
loci 2.4. These loci can contain multiple genes that work together to carry out specific functions.

Alleles, on the other hand, are different versions of a gene that occur due to variations in the
DNA sequence within the gene. A gene can have multiple alleles, which may lead to different
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Figure 2.4: Location of genes on chromosomes.

phenotypes or observable traits. For example, the gene responsible for eye color can have
alleles for blue, green, and brown eyes. If an individual inherits two different alleles for a
gene, they are said to be heterozygous for that gene. If they inherit two identical alleles, they
are homozygous. The combination of alleles an individual carries determines their genotype,
which in turn influences their phenotype or physical appearance.

2.1.3 Reference Genome

The reference genome is a composite assembly of the human genome that serves as a stan-
dard for genomic comparisons. It provides a complete set of genetic information, including the
sequence of all chromosomes and the locations of genes and other functional elements. This
reference genome is used as a template for aligning and analyzing the DNA sequences of in-
dividuals, allowing researchers to analyze the genetic variations that may be associated with
diseases or other traits. Without a reference genome, making sense of the massive amounts of
genomic data generated by sequencing technologies would be considerably more challenging
and less accurate.

The construction of the human reference genome is not based on the DNA of a single individual.
Instead, it is a composite derived from the genomes of several individuals to avoid bias towards
any single individual’s genetic makeup. This approach helps to capture a wider representation
of human genetic diversity. The development of the human reference genome has been a col-
laborative effort that has involved researchers from all over the world. The Human Genome
Project, launched in 1990, aimed to sequence the entire human genome [14]. This project
took more than a decade to complete and laid the foundation for the reference genome that we
use today. Since then, the reference genome has undergone several updates and improvements,
with the most recent version being GRCh38 (Genome Reference Consortium Human Build 38),
released in 2013 [15].



2.2. SEQUENCING GENOMES 8

2.2 Sequencing Genomes

The ability to sequence genomes has made it possible to read the genetic code of organisms with
speed and accuracy. This has made profound impacts on fields such as medicine, agriculture,
and evolutionary biology. The first method of DNA sequencing, also known as Sanger sequenc-
ing, was developed in the late 1970s, laid the groundwork for modern sequencing technologies.
Although it made possible to accurately sequence regions between 500 and 1000 base pairs in
length with high accuracy, it was very time-consuming, expensive, and failed to scale to the
whole genome level [16]. The advent of high-throughput sequencing technologies has revolu-
tionized the field of genomics, enabling the truly complete human genome to be sequenced for
the first time in 2022 [1].

Figure 2.5: Timeline of sequencing technologies.

This section provides an overview of the key technologies used for sequencing genomes, includ-
ing short-read sequencing platforms like Illumina, long-read sequencing platforms like PacBio
HiFi and Oxford Nanopore, and the strengths and limitations of each technology.

2.2.1 Illumina

Illumina sequencing is a widely used technology for high-throughput sequencing of DNA. The
DNA is first cut into small fragments, which are then duplicated and sequenced using a process
called sequencing-by-synthesis. In this process, fluorescently labeled nucleotides are added to
the DNA fragments, and the emitted light is captured by a camera to determine the sequence of
bases.
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Figure 2.6: Illumina sequencing process.

Illumina sequencing is known for its high accuracy, low error rates, and scalability. It can
sequence fragments of length between 150-300 base pairs at 99.9% accuracy. However, it has
limitations when it comes to sequencing repetitive regions, detecting structural variants, and
resolving complex genomic regions. Despite these limitations, Illumina sequencing remains
the workhorse of genomics research due to its cost-effectiveness and high throughput [17].

2.2.2 PacBio HiFi

PacBio HiFi (High-Fidelity) is a long-read sequencing technology developed by Pacific Bio-
sciences. This sequencing generates reads with an average length of 10-25 kilobases (kb),
though some reads can extend up to 50 kb or more. These long reads are particularly advanta-
geous for resolving complex genomic regions, such as repetitive sequences or large structural
variants, which are challenging for short-read sequencing technologies. Each read is generated
by multiple passes of a DNA polymerase around the DNA template, resulting in accuracy rates
exceeding 99.9%. However, the throughput of PacBio HiFi is lower than that of Illumina [18]
[19].

2.2.3 Oxford Nanopore

Oxford Nanopore sequencing is a third-generation sequencing technology that uses nanopores
to sequence DNA. In this technology, DNA strands are passed through a protein nanopore, and
the changes in electrical current as the DNA passes through the pore are used to determine the
sequence of bases. As the DNA passes through the nanopore, each base produces a unique
electrical signal that is detected and converted into a DNA sequence 2.7. This is also known as
basecalling.

Oxford Nanopore devices can generate reads of varying lengths, with average length around 10-
100 kilobases. Under optimal conditions, some reads exceed lengths of 2 million bases. This
long-read capability makes Oxford Nanopore sequencing ideal for de novo genome assembly,
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structural variant detection, and real-time sequencing applications. However, the accuracy of
Oxford Nanopore sequencing has historically been lower than that of Illumina or PacBio HiFi,
with raw read accuracies around 90-95%. Most of the errors occur due to homopolymers,
which are regions of the same base repeated multiple times. As that region passes through the
nanopore, the electrical signal can be misinterpreted, leading to errors in detecting the correct
base. Recent improvements in basecalling algorithms have improved accuracy, and the consen-
sus accuracy can now exceed 99% when multiple reads are aligned to the same region [20].

Figure 2.7: Oxford Nanopore sequencing.
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2.3 Alignments

When we sequence a genome, we are essentially generating a long string of nucleotide bases
that represent the genetic code of an individual. Since the DNA is very long, we need to break it
down into smaller, manageable fragments suitable for sequencing. To interpret these fragments
(also known as reads), these can be done in two ways: with the help of a reference genome or
without it. The former involves using a reference genome as a template to align the sequenced
reads. This is suitable whenever a reference genome is available, as it provides a known standard
for comparison. The later is known as de novo (meaning anew; from the beginning) assembly,
where the overlapping reads are assembled into a contiguous sequence without the need for
a reference genome [21]. When there is no reference genome available, specially for novel
species, de novo assembly is the only option. However, it is computationally intensive and may
not be as accurate as alignment-based methods [22].

In the reference based alignment process, we essentially look for matches and mismatches be-
tween the sequenced reads and the reference genome. A match occurs when the base in the
read is the same as the base in the reference, while a mismatch occurs when the bases differ.
Mismatches can be due to errors in sequencing, genetic variations, or other factors. By identi-
fying matches and mismatches, we can determine the genetic differences between an individual
and the reference genome. The following sections discuss the various types of mismatches and
variants that can arise during the alignment process.

2.4 Genetic Variability: SNPs and SVs

Genetic variability refers to the differences in DNA sequences between the genomes of individ-
uals. When aligning sequenced reads to a reference genome, these variations are encountered as
sequence mismatches, which can be a single base difference (single nucleotide polymorphism
or SNP), a small insertion or deletion (indel), or a larger structural variant (SV). While SNPs
and indels are relatively common and can be detected with high accuracy, structural variants are
more complex and can have a significant impact on the genome [5]. This section provides an
overview of structural variants and their implications for genetic analysis.

Structural variants (SVs) are alterations in the genome that involve large segments of DNA,
ranging from 50 base pairs to several megabases. These variants can include duplications,
deletions, inversions, translocations, and other rearrangements that affect the structure of the
genome, as shown in Figure 2.8. Studies have shown that 3-15x more base pairs are affected
by SVs than by SNPs, highlighting their importance in understanding human genetic variation
[23–25]. A commonly used synonymous term for structural variants is copy number variants
(CNVs), which refer to duplications or deletions of DNA segments that result in an altered
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copy number of a particular region [26]. Although both SV and CNV are sometimes used
interchangeably, CNVs are usually defined as variants involving length at least 1 kb (kilobases)
or larger, while SVs can include variants as small as 50 bp (base pairs).

Figure 2.8: Types of structural variants.

Insertions are structural variants that involve the addition of DNA segments to the genome.
When aligned to a reference genome, insertions appear as regions where the sequenced read
contains extra bases that are not present in the reference. These can be caused by genetic
mutations, viral insertions or simply errors in sequencing.

Deletions are structural variants that involve the removal of DNA segments from the genome.
When aligned to a reference genome, deletions appear as regions where the sequenced read is
missing bases that are present in the reference. Deletions can range in size from a few base pairs
to several kilobases and can have significant effects on gene function and regulation.

Translocations, duplications and inversions are more complex structural variants that involve the
rearrangement of DNA segments within or between chromosomes. A comparative illustration
is provided in Figure 2.9

Figure 2.9: Comparison between various types of SVs.
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2.5 High Confidence Regions and Variant Evaluation

As discussed earlier, the sequenced reads can have mismatches with the reference due to various
factors, including sequencing errors, alignment errors, or genetic variations. To ensure the
accuracy of genomic analyses, it is important to identify regions of high confidence where the
data is reliable and free from errors. These high-confidence regions are typically defined based
on the quality of the sequencing data, the depth of coverage, and the presence of supporting
evidence from multiple reads. By focusing on high-confidence regions, researchers can reduce
the risk of false positives and false negatives in their analyses and make more accurate inferences
about the genetic differences between individuals. Figure 2.10 illustrates the concept of high-
confidence regions and variant evaluation.

Figure 2.10: High confidence regions and variant evaluation.

In Figure 2.10, the blue rectangle defines the high-confidence regions. Here, the benchmark
variants are represented as the green circle. This set is used as a ground truth to evaluate the
performance of different variant calling algorithms. The red circle represents the variants called
by the algorithm being evaluated. The true positives (TP) are the variants called by the algo-
rithm that match the benchmark variants. The false positives (FP) are the variants called by the
algorithm that do not match the benchmark variants. The false negatives (FN) are the variants
present in the benchmark set but not called by the algorithm. The part of the red circle out-
side the high-confidence region is not evaluated, as these regions are considered low confidence
and may contain errors. A good variant calling algorithm should capture a large portion of the
benchmark variants while minimizing false positives and false negatives. More discussion on
this topic can be found at [27].
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2.6 Homozygous Alternate and Heterozygous Variant

As humans are diploid organisms, they inherit two copies of each chromosome, one from each
parent. This means that for each gene, an individual can have two different alleles, one from
the mother and one from the father. Each copy of the gene is called a haplotype, and the
combination of alleles an individual carries is known as their genotype.

When analyzing genomic data, it is important to consider the genotype of an individual at each
variant site. A variant site is called Homozygous Alternate if both copies of the gene carry the
variant allele. This means that the individual has two copies of the variant allele and no copies
of the reference allele. A variant site is called Heterozygous Variant if only one copy of the
gene carries the variant allele and the other copy carries the reference allele.

Figure 2.11: Genotypes: homozygous alternate and heterozygous variant.

When sequencing a diploid genome, we can observe three possible genotypes at a site: Homozy-
gous Reference (both copies carry the reference allele), Homozygous Alternate (both copies
carry the variant allele), and Heterozygous Variant (one copy carries the reference allele, and
the other copy carries the variant allele). The allelic frequency is different for each of these
genotypes, and it is possible to infer the genotype of a variant site based on that frequency and
the sequencing data.

2.7 File Representations

In genomic research, organizing data correctly is very important. As new technologies produce
huge amounts of data, we rely on standardized file formats to keep everything in order. These
formats help us manage, store, and analyze genetic information efficiently. A brief outline
of some common file formats used in genomics is given for reference, while more detailed
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discussions and examples can be found in chapter 23 of “The Biostar Handbook, 2nd Edition”
[28].

• FASTA: This format stores DNA sequences. It’s used to keep track of large genetic
sequences and acts as a reference for various analyses.

• FASTQ: This format is essential for storing raw data from sequencing machines. It in-
cludes the sequences and their quality information, which helps in checking the data’s
reliability before further analysis.

• SAM/BAM: These formats are used for alignment. They show how DNA sequences from
the samples match up to known reference sequences. This helps in identifying changes
or mutations in the DNA.

• VCF: This format is used for storing gene variants. It records differences between the
sample sequences and the reference, which is crucial for studies on genetic variations.

Knowing these formats is important for anyone working with genetic data. They help us under-
stand and use the information we get from DNA sequencing. The next few subsections aim to
give more details about each format, how they are used, and why they are important in genetics.

2.7.1 Terminologies

Template A DNA fragment that is sequenced on a sequencing machine.

Read The sequence of bases obtained from a template during sequencing.

Segment A contiguous sequence of bases or subsequence.

Phred Score A quality score assigned to each base in a sequence, indicating the confidence in
the base call. Given as Q = −10 log10(P ), where P is the probability of an incorrect base
call.

Tandem repeat A sequence of DNA bases that is repeated multiple times in a row. These
repeats can vary in length and are often associated with genetic disorders.

Multiple mapping When a read aligns to multiple locations in the reference genome, e.g in
repetitive regions. The best placement is considered the primary alignment, while the
others are secondary alignments.

Clipping Removing parts of a read that do not align to the reference genome. Soft clipping
removes the unaligned parts, but keeps the sequence in the alignment. Hard clipping
removes the unaligned parts entirely. Clipping only occurs at the beginning or end of a
read.
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2.7.2 Reference Genome: FASTA Format

The FASTA format is a simple text-based format commonly used to store nucleotide sequences
or peptide sequences [29]. It is often used to keep reference genomes which are crucial in
various types of genetic analysis. The format consists of two main parts:

Header: Each sequence in a FASTA file begins with a single-line description, also known as
the header, which starts with ‘greater than’ symbol (>). This header line is followed by lines of
sequence data.

Sequence Data: The genetic sequences are written in single-letter codes (A, C, G, T for DNA
sequences; A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V for proteins). These
sequences can be broken into multiple lines, but typically, each line of a file carries no more
than 80 characters to enhance readability. The letter N is often used to represent unknown bases
or ambiguous nucleotides, which is more common at the beginning or end of a sequence.

Example of a DNA sequence in FASTA format:

>chr1 Homo sapiens chromosome 1, GRCh38 primary reference

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

ACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTACGTT

GCGTGCGTGCGTGCGTGCGTGCGTGCGTGCGTGCGTGCGTGCGTGCGTGCGTGCGTG

2.7.3 Sequenced Genome: FASTQ Format

The FASTQ format is essential for storing raw sequencing data. It enhances the FASTA for-
mat by incorporating a quality score for each nucleotide, offering a detailed view of both the
sequence and the reliability of each base call.

Structure of FASTQ Files: Each sequence in a FASTQ file is represented by four lines:

1. Header Line: Begins with an ‘@’ symbol followed by a sequence identifier and an
optional description, similar to the header in FASTA format.

2. Sequence Line: Contains the raw nucleotide sequence (A, C, G, T), representing a DNA
fragment.

3. Separator Line: Starts with a ‘+’ character and may optionally repeat the sequence
identifier.

4. Quality Line: Corresponds directly to the sequence line above it, providing a quality
score for each nucleotide, encoded as ASCII characters.

Example of a FASTQ Record:
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@SEQ_ID_1
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT
+
!’’*((((***+))%%%++)(%%%%).1***-+*’’))**55CCF>>>>>>CCCCCCC65

Quality Scores: In this example, each symbol in the quality line corresponds to a nucleotide in
the sequence line, with higher ASCII values indicating greater confidence in the nucleotide call.
Each character in the quality line represents a numerical value between 0 and 40, with 0 being
the worst quality and 40 being the best. The probability of an incorrect base call is calculated
using the formula P = 10−Q/10, where Q is the ASCII value of the quality score. For example,
a quality score of 30 corresponds to an error probability of 10−3, indicating a 1 in 1000 chance
of an incorrect base call. More detailed examples and explanations can be found in [28].

2.7.4 Alignment Data: SAM/BAM Format

When aligning sequenced reads to a reference genome, the resulting alignments are stored in
the Sequence Alignment/Map (SAM) format. This format is used to represent the alignment
of reads to a reference genome, providing detailed information about the position, quality, and
mapping of each read. The Binary Alignment/Map (BAM) format is a binary version of the
SAM format, which is more compact and efficient for storing large amounts of alignment data.
Other than the binary encoding, BAM files are identical to SAM files in terms of content and
structure. The SAM/BAM format consists of a header section and an alignment section, with
each alignment represented by a set of fields. Here, only the alignment section is discussed,
while a detailed documentation can be found in the SAM specification [30].

Alignment Section: In the alignment section of a SAM file, each alignment is represented by
a set of fields, with each field separated by a tab character. While there are 11 mandatory fields,
the following 6 fields are specifically highlighted for brevity and focused discussion:

1. QNAME: Query template name (read name).

2. RNAME: Reference sequence name.

3. POS: 1-based leftmost mapping position.

4. CIGAR: CIGAR string describing the alignment.

5. TLEN: Template length (length of read).

6. SEQ: Segment sequence (read sequence).
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The CIGAR (Compact Idiosyncratic Gapped Alignment Report) field is particularly important,
as it describes the alignment of the read to the reference, indicating matches, mismatches, inser-
tions, deletions, and other alignment features. The CIGAR string is constructed using a series
of operations, each represented by a number followed by a letter. Allowed operations in the
CIGAR string are listed in Table 2.1:

Op Description Consumes query Consumes reference
M alignment match yes yes
I insertion to the reference yes no
D deletion from the reference no yes
N skipped region from the reference no yes
S soft clipping yes no
H hard clipping no no
P padding no no
= sequence match yes yes
X sequence mismatch yes yes

Table 2.1: Description of CIGAR operations.

Pos: 123456789......
Ref: ACCTGTAAGC GC
Read: AC---ATAGCTTTGC

Here, the alignment starts from position 1, and the CIGAR string would be 2=3D2X3=3I2=.
This indicates that the first two bases match, followed by a deletion of three bases, two mis-
matches, three matches, three insertions, and finally two matches. A common confusion is be-
tween the ‘M’ and ‘=’ operation. The ‘M’ operation is used to represent a match or mismatch,
while the ‘=’ operation is used to represent a match only. Using ‘M’, the above example would
be 2M3D5M3I2M. The difference is that, in the ‘M’ operation, both matches and mismatches
are represented as 5M, while in the ‘=’ operation, they are represented as 2X3=.

Pos: 123456 789............
Ref: CCTAGG TAATCT ATCCCCGG
Read: ATCGAA TAATCG

In this example, the alignment starts from position 7, and the corresponding CIGAR string
would be 6S5=1X8H. This indicates that the first six bases are soft-clipped, followed by five
matches, one mismatch, and eight hard-clipped bases. Although the soft-clipped bases are
present in the read, they are not considered as part of the alignment. The hard-clipped bases are
removed entirely from the read.

Some important observations about clipped bases:
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• Clipping only occurs at the beginning or end of a read. However, a deletion can occur
anywhere in the alignment.

• Clipping does not affect the starting or ending position of the alignment. The starting po-
sition is determined by the first non-clipped base, while the ending position is determined
by the last non-clipped base.

2.7.5 Variants: VCF Format

The Variant Call Format (VCF) is a widely used format for storing genetic variants identified in
sequenced genomes. It provides a structured representation of variants, including SNPs, indels,
and structural variants, along with quality scores, annotations, and other relevant information.
A complete documentation of the VCF format can be found in the VCF specification [31].

Structure of VCF Files:

• Header Lines: Start with “##”. These lines provide metadata about the data, including
the file format version and reference genome.

• Title Line: Begins with a single “#”. This line names the columns in the data section.

• Data Lines: Represent individual variants. Key fields include:

– CHROM: Chromosome number.

– POS: Position of the variant on the chromosome.

– ID: Identifier for the variant, if available.

– REF: Reference bases.

– ALT: Alternative bases observed.

– QUAL: Quality score of the variant call.

– FILTER: Filter status of the variant.

– INFO: Additional information about the variant.

Example of a VCF Entry:

#CHROM POS ID REF ALT QUAL FILTER INFO
20 14370 rs6054257 G A 29 PASS .
20 15532 rs6054258 G GTCT 30 PASS .
21 1024 . TATT T 20 PASS .
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In this example, the first entry represents a SNP at position 14370 on chromosome 20, where
the reference base is G and the alternate base is A. The quality score of the variant call is 29,
and the variant has passed the quality filter. The second entry represents an insertion at position
15532 on chromosome 20, where the reference base is G and the alternate bases are GTCT. The
third entry represents a deletion at position 1024 on chromosome 21, where the reference base
is TATT and the alternate base is T. For insertions, REF contains only the base just before the
insertion, while ALT contains the inserted bases. For deletions, REF contains the deleted bases,
while ALT contains only the base just before the deletion.

2.7.6 Regions of Interest: BED Format

The Browser Extensible Data (BED) format is used to represent genomic regions of interest,
such as gene loci, regulatory elements, and other functional regions. It is a tab-delimited text
format that specifies the chromosomal coordinates of each region, along with additional infor-
mation such as the name of the region, the score, and the strand. Among all other formats, BED
is perhaps the simplest one to understand and use. A detailed documentation of the BED format
can be found in the BED specification [32]. For our purpose, we will only discuss the basic
structure of the BED format.

Structure of BED Files: Each line in the BED file represents a genomic region and consists of
the following fields:

1. Chromosome: Chromosome number or identifier.

2. Start: Start position of the region on the chromosome (0-based).

3. End: End position of the region on the chromosome (1-based, inclusive).

4. Optional fields such as the name of the region, the score, and the strand. These are not
necessary for our thesis and are not discussed here.

For example, a typical BED file entry might look like this:

chr1 1000 2000
chr1 5000 6000
chr2 3000 4000

The chr prefix is sometimes omitted, especially in human genomes. In that case, only the
chromosome number is used.
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2.8 Tools for Working With Genomic Files

Properly analyzing genomic data in their various file formats requires the use of various com-
mand line tools. In this section, we provide a brief overview of some commonly used tools for
working with genomic files:

2.8.1 FASTA Files

FASTA files store nucleotide or peptide sequences. Tools for working with FASTA files include:

• Seqtk - A lightweight tool that provides functionalities like sequence transformations and
subsequence extraction.

• SAMtools faidx - Allows indexing and retrieval of subsequences from FASTA files.

2.8.2 FASTQ Files

FASTQ files are used to store biological sequences alongside their quality scores. Common
tools for handling FASTQ files are:

• FASTQC - Provides quality control checks on raw sequence data.

• Trimmomatic - A flexible read trimming tool for Illumina FASTQ data.

2.8.3 SAM/BAM Files

SAM (Sequence Alignment/Map) and BAM (Binary Alignment/Map) files are used for storing
aligned sequences. Tools designed for these formats include:

• SAMtools - Offers various utilities for manipulating alignments in the SAM/BAM for-
mat.

• Picard Tools - A set of Java tools for working with high-throughput sequencing data in
the BAM format.

2.8.4 VCF Files

VCF (Variant Call Format) files are used for storing gene sequence variations. Tools that can
manage VCF files include:
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• BCFtools - Provides utilities for variant calling and manipulating VCF and BCF files.

• VCFtools - Designed for working with VCF files, including filtering, comparing, and
summarizing variant data.

2.8.5 BED Files

BED files are used to store genomic intervals. Tools for working with BED files include:

• BEDTools - A powerful toolset for genome arithmetic tasks.

• bedops - A high-performance genomic feature operations tool.

2.8.6 Common Alignment Tools

For aligning sequencing reads to reference genomes, several robust tools are available:

• BWA - Performs fast light-weight alignments of sequencing reads against a large refer-
ence genome.

• Bowtie2 - An ultrafast and memory-efficient tool for aligning sequencing reads to long
reference sequences.

• Minimap2 - A versatile pairwise aligner for genomic and spliced nucleotide sequences,
particularly effective for long reads.

2.8.7 Visualization Tools: IGV

One of the most popular visualization tools is the Integrative Genomics Viewer (IGV). Devel-
oped by the Broad Institute, IGV allows users to view several different types of genomic data
including sequence reads, alignments, and variants. Its intuitive interface supports zooming and
panning across the genome at any scale, from a whole genome to a single nucleotide. IGV sup-
ports a wide variety of data types including SAM/BAM, VCF, and BED formats, among others,
making it versatile for genomic research projects.



Chapter 3

Literature Review

Genomic structural variants (SVs) encompass a wide range of alterations in the human genome,
such as gains (duplications) and losses (deletions) of DNA segments, as well as balanced rear-
rangements like inversions and translocations. These variations represent a significant form of
genomic diversity. A study by Conrad et al. highlights the prevalence and complexity of struc-
tural variants, demonstrating their substantial contribution to genetic variation [33]. This study
also demonstrates that structural variants affect a considerably larger portion of the genome
compared to single-nucleotide polymorphisms (SNPs). Mills et al. further investigate the im-
pact of these structural variations and emphasize on their role in shaping the genomic land-
scape [34]. Additionally, Sudmant et al. provide a comprehensive overview of the diversity
and distribution of structural variants, highlighting their crucial role in comprehending human
genetic diversity [35].

3.1 Impact of Structural Variants

3.1.1 Disease and Genetic Disorder

Understanding the genetic basis of complex phenotypes and diseases in humans requires inves-
tigating both single-nucleotide polymorphisms and structural variants. Polymorphic structural
variants are crucial in shaping common traits and significantly impact the prevalence of various
widespread diseases. McCarroll et al. demonstrate that a certain deletion near the IRGM gene
is linked to Crohn’s disease [36]. Such structural variation alters cellular autophagy which is
a critical process involved in Crohn’s disease pathogenesis. Similarly, a study conducted by
Stranger et al. reveals that structural variants, including copy number variants (CNVs), signifi-
cantly impact diseases by contributing to genetic variation in gene expression [37]. The analysis
reveal that CNVs capture 17.7% of genetic variation in gene expression.

23



3.1. IMPACT OF STRUCTURAL VARIANTS 24

Rovelet-Lecrux et al. discover that duplication of the APP locus causes autosomal dominant
early-onset Alzheimer’s disease with cerebral amyloid angiopathy, highlighting the direct im-
pact of structural variants on inherited neurological conditions [38]. Similarly, Hedges et al.
provide evidence of fine-scale structural variation at loci associated with autism spectrum disor-
der, indicating that structural variants contribute to the genetic complexity of neurodevelopmen-
tal disorders [39]. Weischenfeldt et al. emphasize the phenotypic impact of structural variants,
providing insights into how these variations contribute to human diseases [40].

Further research by Korbel et al. [41] and Zhang et al. [42] supports these findings, demonstrat-
ing that structural variants are not only associated with common diseases but also with sporadic
diseases, as well as Mendelian and complex traits through mechanisms such as dosage effects,
gene disruption, and position effects. The study by Zhang et al. reveals that triplication of
genes like PLP1, MECP2, and LIS1 can cause more severe phenotypic consequences than du-
plication, leading to conditions such as Rett syndrome and lissencephaly [42]. Additionally,
the study highlights that structural variants drive human genome evolution by facilitating gene
duplication and exon shuffling, resulting in the development of new gene functions.

Moreover, somatic structural rearrangements, which can be highly complex, are pivotal in the
development and progression of aggressive cancers. Rausch et al. perform a whole-genome
sequencing analysis of a Sonic-Hedgehog medulloblastoma (SHH-MB) brain tumor from a pa-
tient with a germline TP53 mutation (Li-Fraumeni syndrome) and reveal extensive, complex
chromosome rearrangements [43]. Their study indicates a strong association between TP53
mutations the presence of structural variants in SHH-MBs and other tumor types, such as acute
myeloid leukemia. Furthermore, Stephens et al. investigate the pattern of genomic rearrange-
ments invloving chromothripsis, a phenomenon where tens to hundreds of structural variants
occur simultaneously in a single cellular crisis, as opposed to the gradual accumulation of mu-
tations over time [44]. According to their study, the hallmark of chromothripsis is evident in at
least 2%–3% of all cancers and is particularly prevalent in approximately 25% of bone cancers.
Additionally, Macintyre et al. discuss the importance of sequencing structural variants to de-
velop precision therapeutics [45]. These findings underscore the significant impact of somatic
structural variants in cancer biology and their role in driving tumorigenesis.

3.1.2 Evolution, Gene Regulation, and Phenotypic Trait

Structural variants are pivotal in evolutionary processes, influencing gene losses and transposon
activity. Transposons are DNA sequences that have the ability to move or transpose themselves
to different positions within a genome [46]. Dennenmoser et al. investigate the evolution-
ary dynamics of structural variants in the invasive hybrid fish Cottus compared to its parental
species Cottus rhenanus and Cottus perifretum [47]. This study report copy number increases
of transposable elements and protein-coding genes in the hybrid kind, illustrating how struc-
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tural variants drive evolutionary changes in response to environmental pressures. Additionally,
Lupski explore the impact of structural variants on the human genome, highlighting their role in
both disease and evolution [48]. These studies demonstrate that structural variants are not only
mutagenic but also essential for adaptive evolution, facilitating genomic diversity and species
survival.

In the context of gene regulation, structural variants can significantly affect function of regula-
tory elements by altering their structure. Chiang et al. map cis expression quantitative trait loci
(eQTLs) in 13 tissues by analyzing structural variants, single-nucleotide variants, and short in-
dels using deep whole-genome sequencing [49]. Their findings reveal that structural variants are
causal in 3.5–6.8% of eQTLs and that expression-altering structural variants have larger effect
sizes than single-nucleotide variants and indels. This regulatory influence of structural variants
underscores their importance in maintaining cellular function and responding to environmental
cues.

Structural variants also influence various phenotypic traits, including mating behaviors and
reproductive isolation. Zichner et al. study a high-resolution map of structural variants in
Drosophila melanogaster, which includes 8962 deletions and 916 tandem duplications, reveal-
ing significant structural variations that affect phenotypic traits [50]. Jeffares et al. further
demonstrated that transient structural variations have strong effects on quantitative traits and
reproductive isolation in fission yeast (Schizosaccharomyces pombe), indicating that structural
variants play a crucial role in speciation and the development of reproductive barriers [51].

3.2 Traditional Algorithm-Based Structural Variants Callers

Next-generation sequencing (NGS), a collection of modern sequencing technologies, have rev-
olutionized genomic research by allowing the rapid and accurate sequencing of entire genomes,
transcriptomes, and other DNA or RNA samples [52–54]. Unlike traditional Sanger sequenc-
ing, which sequences DNA one fragment at a time, NGS can process millions of fragments
simultaneously, significantly increasing throughput and reducing costs [55]. NGS technologies
are categorized into two major paradigms: short-read sequencing and long-read sequencing.

3.2.1 Short-Read-Based Structural Variant Calling Approaches

Short-read sequencing approaches, such as those provided by Illumina platforms, generate large
volumes of data at relatively low costs with high accuracy [17]. These characteristics make
short-read sequencing particularly useful for population-level research, where the goal is to
sequence many individuals to identify common variants, and for clinical variant discovery,
where cost-effectiveness is necessary. Considerable advancements have been made in devel-
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oping short-read-based structural variant calling approaches, which have played a pivotal role
in large-scale genomics studies [56,57]. These approaches utilize various techniques, including
read-depths, discordant read-pairs, split read alignments, local assembly, and combinations of
these methods. Below, we elaborate on specific studies and methodologies that have signifi-
cantly advanced the field of structural variants detection using short-read sequencing data.

Read-Depths

Yoon et al. develop a method for the sensitive and accurate detection of copy number vari-
ants (CNVs) by analyzing the depth of sequencing reads aligned to a reference genome. This
approach identifies CNVs by detecting regions with abnormal read depths, offering fine-scale
detection capabilities [58].

Discordant Read-Pairs

Chen et al. introduce BreakDancer, an algorithm for high-resolution mapping of genomic struc-
tural variation. This method identifies SVs by analyzing paired-end sequencing reads that map
to unexpected locations, indicating potential genomic rearrangements [59].

Split Read Alignments

Ye et al. present Pindel, a tool that detects large deletions and medium-sized insertions from
paired-end short reads. By leveraging split read alignments, Pindel accurately identifies SV
breakpoints and enhances resolution [60].

Local Assembly

Chen et al. develop TIGRA, an assembler that performs local assembly around putative break-
points identified by split reads or discordant read-pairs. This targeted approach improves the
accuracy and resolution of SV detection compared to methods that rely solely on read depths or
discordant mapping [61].

Combination Approaches

Hormozdiari et al. create VariationHunter, a combinatorial algorithm that integrates read-depth,
discordant read-pairs, and split read alignment methods [62]. Jiang et al. develop PRISM, a
pair-read informed split-read mapping approach that detects insertions, deletions, and structural
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variants at the base-pair level. This method enhances the accuracy of SV detection by combin-
ing pair-read and split-read information [63]. Rausch et al. introduce DELLY, an integrated tool
for structural variant discovery that combines paired-end and split-read analysis. This approach
provides a more comprehensive and accurate detection of structural variants by leveraging mul-
tiple types of read information [7]. These combination approaches improve the detection of
various types of structural variants compared to methods that use only a single type of evidence.

Despite their significant contributions, these short-read-based tools face limitations such as re-
duced sensitivity and false positives due to the relatively low read length. Studies like those by
English et al. [64] and Tattini et al. [65] highlight the challenges in assessing structural variation
and the need for continuous methodological improvements to enhance detection accuracy and
reduce false positives.

3.2.2 Long-Read-Based Structural Variant Calling Approaches

The rapid development of long-read sequencing technologies, such as Pacific Bioscience (PacBio)
[66] and Oxford Nanopore Technology (ONT) [67], has enabled the comprehensive detection
of structural variants. These advancements provide long-range spanning information, allowing
for higher resolution genomic analysis [68]. However, the high sequencing error rates, typically
ranging from 5–20%, and the substantial lengths of reads, often exceeding 10kbp, necessitate
the development of novel computational approaches to effectively analyze the data generated by
these technologies, suggested by Goodwin et al. [55]. They highlight that traditional methods
are often insufficient for handling the complexities introduced by these long reads, and thus,
innovative algorithms and strategies are essential. Mainly, two categories of approaches are
employed, i.e., de novo assembly-based approaches, which reconstruct genomes from scratch
without using a reference, and reference-based alignment approaches, which align the reads
directly to a reference genome to detect structural variants. Addintionally, alignment free ap-
proaches are also possible. Khorsand et al. present Nebula, an alignment free tool that utilizes
difference in k-mer count between the sample and reference to detect structural variants [69].

De Novo Assembly-Based Approaches

De novo assembly-based approaches aim to assemble reads into longer genomic sequences
(i.e., contigs or scaffolds) and discover SVs from the assembly. These approaches are less
influenced by the reference genome compared to reference-based alignment approaches. For
instance, Seo et al. perform de novo assembly and phasing of the Korean genome AK1 using
long-read sequencing technologies. Their study demonstrates the power of de novo assembly in
providing a high-resolution view of structural variations and accurately reconstructing complex
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genomic regions [70]. Similarly, Shi et al. reveal the inherent limitations of short-read sequenc-
ing in characterizing repeat elements and utilize single-molecule real-time (SMRT) long-read
sequencing along with de novo assembly to decode the genome of a Chinese individual [71].
Wenger et al. report the optimization of circular consensus sequencing (CCS) to significantly
improve the accuracy of single-molecule real-time (SMRT) long-read sequencing and its im-
portance in improving variant detection and assembly of human genomes [18]. Their approach
facilitates high-quality de novo assemblies that enhance the detection of structural variants.

However, de novo assembly-based approaches are typically computationally intensive. As dis-
cussed by Mahmoud et al. in their study on the computational demands and complexities associ-
ated with de novo assembly in structural variant detection, de novo assembly-based approaches
require substantial computational resources to accurately assemble long reads into contigs, es-
pecially when dealing with large and complex genomes [72]. Additionally, these approaches
still face challenges in reconstructing haplotype sequences of large genomes, which can com-
plicate the SV calling process.

Reference-Based Alignment Approaches

Reference-based alignment approaches involve aligning reads directly against the reference
genome and detecting structural variants by analyzing the alignment results. These methods
are more cost-effective in terms of computational resources while maintaining sensitivity and
have been widely used in long-read-based SV calling. Advanced long-read aligners such as
BLASR [73], NGMLR [8], Minimap2 [74], and PBMM2 [75] are commonly used for aligning
reads against the reference.

Several reference-based alignment SV callers have been developed, each utilizing different tech-
niques to identify SVs. English et al. introduce PB-Honey, which identifies genomic variants
by detecting discordant and interrupted mappings in long-read sequences [76]. Similarly, Hud-
dleston et al. present SMRT-SV, a tool that uses long-read haploid genome sequence data to
discover and genotype structural variation [77]. In another approach, Sedlazeck et al. de-
veloped Sniffles, which provides accurate detection of complex SVs through single-molecule
sequencing [8]. Furthermore, tools like PBSV [78] and SVIM [79] have been designed to
analyze mapped long reads for SV detection, employing methods such as identifying local ge-
nomic regions with highly divergent alignments, local assembly and re-alignment of clipped
read parts, and clustering of SV-spanning signatures [80]. Jiang et al. introduce CuteSV which
offers higher sensitivity then the other reference-based alignment SV callers, particularly for
low-coverage datasets, while maintaining accuracy [6].

Despite these advancements, reference-based alignment SV calling remains challenging. The
high error rates and complexity of SVs can result in chimeric and heterogeneous alignments
around SV breakpoints, reducing sensitivity and accuracy. Consequently, these tools often re-
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quire high sequencing coverage to detect certain SVs. Tools such as PBSV and SMRT-SV are
time-consuming and do not scale well with large datasets. Some tools, including SMRT-SV and
PB-Honey, only support one type of sequencing data (e.g., PacBio reads), taking advantage of
the unique characteristics of that data type. Among these tools, CuteSV stands out by providing
higher sensitivity and accuracy, especially for low-coverage datasets. However, the accuracy
of CuteSV decreases in genomic regions with high complexity, complex soft-clipped regions,
and areas with non-informative read alignments. These limitations continue to be bottlenecks
in the widespread application of long-read sequencing data for SV detection without the aid of
machine learning.

3.3 Machine Learning-Based Structural Variants Callers

As sequencing technologies advance, the complexity and volume of genomic data continue
to grow, making traditional algorithm-based methods increasingly inadequate for accurately
detecting and genotyping both single-nucleotide variants (SNVs) and structural variants (SVs).
Machine learning offers a powerful approach, leveraging vast amounts of data to learn complex
patterns and improve the sensitivity and specificity of variant calling.

3.3.1 Machine Learning in Single-Nucleotide Variant Calling

In the context of single-nucleotide variant calling, tools such as Medaka [81], Clairvoyante [82],
Clair [83], and DeepVariant [4] significantly enhance the accuracy and robustness of variant
detection by using deep learning methods. DeepVariant demonstrates that a deep convolutional
neural network (CNN) can accurately call small genetic variations in aligned next-generation
sequencing data by learning the statistical relationships between images of read pileups around
putative variants and true genotype calls [4].

Shafin et al. introduce PEPPER-Margin-DeepVariant, a haplotype-aware single-nucleotide vari-
ant (SNV) caller built on the foundation of DeepVariant [5]. By retraining the neural network,
it achieves highly accurate variant calls across various sequencing platforms. PEPPER-Margin-
DeepVariant offers a robust genotyping pipeline that delivers accurate single-nucleotide vari-
ant identification using nanopore and PacBio HiFi long reads, outperforming existing variant
callers such as Medaka [81], Clair [83], and Longshot [84]. For our study, we have significantly
modified the PEPPER pipeline to enhance structural variant detection using PacBio HiFi data,
ensuring precise detection of SV candidates and accurate feature extraction.
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3.3.2 Machine Learning in Structural Variant Calling

In recent years, some highly accurate structural variant calling tools have been developed by the
aid of machine learning that can detect complex genomic variations with greater sensitivity and
specificity than traditional algorithm-based tools. Cheng et al. introduce NanoVar, a notable
ML-based structural variant caller that employs a simulation-trained neural network classifier
to determine confidence score for each structural variant [85]. It uses the read-depth coverage
of each structural variants, together with other structural variant characteristics as features to
classify events, providing a robust framework for SV detection in nanopore sequencing data.
NanoVar leverages the power of artificial neural networks (ANN) to handle the high error rates
associated with nanopore reads, thereby improving the accuracy of SV detection.

Furthermore, Kim et al. develop FusionAI, another advanced deep neural network (DNN)
model-based tool that predicts whether a fusion gene breakpoint at the exon junction-junction
area (predicted from RNA-seq data) is a potential fusion gene breakpoint by classifying be-
tween fusion-positive and fusion-negative on the basis of DNA sequences. [86]. Fusion genes
are a specific type of structural variant occurring as a result of translocation, interstitial dele-
tion and chromosomal inversion. Despite its advancements, FusionAI has limitations in the
broader context of SV detection, especially concerning general indels. FusionAI is specifically
designed to predict fusion gene breakpoints from RNA-seq data, which does not cover other
types of structural variants.

Dysgu is another prominent machine learning based SV caller developed by Kez et al. that uti-
lizes paired-end or long reads and detects structural variant signals from alignment gaps, discor-
dant, split-reads and soft-clipped alignments [9]. It then clusters the candidate structural variant
signatures and uses a fast consensus sequence algorithm to generate consensus sequences at
each breakpoint. The fast consensus sequence algorithm is based on the concepts of positional
de Brujin graph and partial order alignment (POA) graphs. Finally, it uses a gradient boosting
machine classifier with 42 features calculated for each candidate to detect indels.

Overall, the integration of machine learning in SV calling has significantly advanced the field.
Machine learning-based tools like Dysgu [9] substantially outperforms traditional algorithm-
based methods in terms of sensitivity and specificity, due to their capacity to learn complex
patterns by leveraging various features of candidate structural variants. Despite these advance-
ments, the specific application of deep learning to SV calling has remained largely unexplored.
Inspired by the success of PEPPER-Margin-DeepVariant, we integrate a deep learning-based
model to accurately detect structural variants, utilizing the features of candidate structural vari-
ants generated by our modified pipeline of PEPPER [5].



Chapter 4

Methodology

In this section, we describe the methodology used to detect structural variants from the align-
ment file. We propose a pipeline that combines the strengths of PEPPER-Variant and Long-
Short-Term-Memory (LSTM) models to detect structural variants. The pipeline is divided into
three main parts: Initial processing of raw reads and alignment, candidate variant generation
and finally labeling and genotyping. The overview of the pipeline is shown in Figure 4.1. The
following sections describe the pipeline in detail.

4.1 Overview

Figure 4.1: Overview of the pipeline.

At a high level, a vial containing the sample human genome is first sequenced to generate raw
reads in FASTQ file format. These reads are then aligned against a reference genome, and the
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alignment file is generated in SAM/BAM format. The main work of our pipeline begins by pro-
cessing an input alignment file, which it divides into multiple smaller, manageable windows for
concurrent analysis. Within each window, we examine potential SV breakpoints by interpret-
ing the signatures present in the alignment information, represented by the CIGAR string. We
specifically focus on insertions and deletions, which can appear either with their own signatures
or with soft-clipped reads, and track the total variant support count across all reads base by base.
If the support count exceeds a pre-defined threshold, that position is identified as a candidate
variant breakpoint. Finally, we generate a pileup summary matrix around each breakpoint and
pass it to the LSTM model for genotyping and variant classification. Finally, the variants are
output in VCF format.

4.2 Pileup Image Generation

The PEPPER-VARIANT module generates pileup summary image for each putative variant site
within the given regions of interest. The following command was used during training image
generation:

pepper_variant_train make_train_images \
-b ${BAM} \
-f ${REF} \
-tv ${TRUTH_VCF} \
-r 1-22\
-rb ${TRUTH_BED} \
-t ${THREADS} \
-o ${TRAIN_OUTPUT} \
-d 1.0 \
-p 1.0 \
--hifi

The following command was used during test phase image generation:

pepper_variant make_images \
-b ${BAM} \
-f ${REF} \
-r 1-22\
-rb ${TRUTH_BED} \
-t ${THREADS} \
-o ${TRAIN_OUTPUT} \
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-d 1.0 \
-p 1.0 \
--hifi

In both cases, the pepper variant program is launched. During training, make train images
sub-command is used and paths to the alignment file, reference file, chromosome ranges to scan,
ground truth variants in the VCF file, regions of interest in the BED file and number of threads
to use is provided as arguments. The functional flow of the pepper variant train program
during training is elaborated below:

The program starts with pepper variant train.py file, where the provided arguments are pro-
cessed and then the function generate images in ImageGenerationUI.py is called. It fetches
the regions of interest and chromosome lists using a FASTA handler, linked with PyBind API.
It then chunks the given chromosomes into windows of 100kbp and processes each in separate
threads. From there, the generate summary function is called. It takes in the window range
in the choromosome and calls the create summary function in AlignmentSummarizer.py. The
chromosome ID, start position of the window and ending position of the window is passed.

During the training mode, the create summary function in AlignmentSummarizer.py iterates
over each regions of interest in the BED file that falls within the given window and pads them
with a fixed constant named REGION SAFE BASES, in our case set to 300. The procedure is
illustrated in Figure 4.2. The pink window is the ground truth variant window found from
the BED file. It is then expanded to the green window, which we refer as the search window or
region of interest. Each region of interest has a region start and region end value. The flow
then transfers to bam handler function, bound with PyBind API, and gathers all the alignment
reads that falls within this region of interest. It then fetches the ground truth variants from
the VCF file and the reference sequence that falls within this region. Homozygous alternates
(variant in both haplotype) are stored in truth hap1 records and heterozygous variants (variant
only in one haplotype) are stored in truth hap2 records. Finally, the flow transfers to the heart
of the program, region summary.cpp. If first intializes the constructor with the chromosome
ID, region start, region end and the reference sequence. For clarity, it should be noted
that the values region start and region end are not the same as the window start and end.
This is the padded start and end region fetched from the BED file that falls within the 100kbp
chunked window.

In region summary.cpp, during the training phase, we have the ground truth variants along
with their genotypes available in truth hap1 records and truth hap2 records. Two 2D vectors
hp1 truth alleles and hp2 truth alleles, each with the size region end - region start are initial-
ized. These vectors store the variants at each base position from the passed variants. Two 1D
vectors are also initialized with the same size. These vectors place ‘R’ in positions where there
are no variants, and ‘#’ for deletions, ‘*’ for insertions. For a homozygous alternate, both vec-



4.2. PILEUP IMAGE GENERATION 34

Figure 4.2: Creating the variant search window in PEPPER.

tors should contain the same label, while for a heterozygous variant, only either of them should
contain the variant label, and the other should contain ‘R’. It should be noted that, in the original
unmodified pipeline, only the deletion start position had the label placed, and the deletion end
position did not have that label.

Figure 4.3: Breakpoints near the variants.

After the labels have been identified and stored in each base position within the region of in-
terest, the final phase of the candidate pileup matrix generation starts by calling the gener-
ate summary function in region summary.cpp. This is where most of our modifications went,
so a good understanding of this function is needed to get a better overview of the following
sections. This function takes in as parameters various predefined thresholds for indels, base
qualities, and the ones that are of interest are candidate window size, feature size. Candidate
window size is the window length for each of the potential variant sites, and feature size refers
to the number of features that are to be stored for each variant. Potential variants are found by
traversing each position across the search window, and keeping track of the total variant support
counts. If the counts exceed the variant support threhsold value, that position is regarded as a
potential variant or a variant breakpoint, as shown in Figure 4.3. The original pipeline used a
total of 26 features stored across a 32-length window for each potential variants, which is called
as a candidate window. We provide an illustration of the candidate window in Figure 4.4.
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Figure 4.4: Overview of the candidate window in PEPPER VARIANT pipeline.

Here, there are 13 features for each of the forward and reverse strands, which make up total of
26. We only explain feature for the forward strand, as the rest are similar for the reverse strands.

• The first feature SL is used to represent a SNP. Wherever there is an SNP, that correspond-
ing position has that SL value set to 1. The next two features IL and DL keep track the
length of insertions and deletions at each base position. All the corresponding positions
for that feature are set to the length of indels found from the alignment reads.

• The next feature RF represents how many forward strands support the reference base at
each position of the window.

• The next three features SS , IS and DS stores how many forward strand read supports the
SNP, insertion or deletion at each position.

• The next four features AF , CF , TF , GF store the total count of nucleotides at each position
as supported by the reads.

• The next two features IF and DF stores the total insertion and deletion support anchored
to the start of that insertion or deletion.

• The next feature ∗F stores the total deletion support across the span of the deletion or
whatever part of that deletion which fits within the candidate window.

How these features are filled up are discussed in this paragraph. For each potential variant, the
following 5 data structures are kept:
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1. image matrix, a 2D vector of size (region end - region start, feature size). This stores
the pileup image that we have been discussing earlier.

2. AlleleFrequencyMap, a 1D vector of size (region end - region start). Each position of the
vector is a hashmap. This data structure keeps track of the count of unique variants that
appear at each position.

3. AlleleFrequencyMapFwdStrand, AlleleFrequencyMapRevStrand: Same as before, but
now these just keep the count of the variant unique to forward or the reverse strand read
of the alignment file.

4. AlleleMap, same size as AlleleFrequencyMap. Each position is also initialized as a
hashmap. This stores the unique variant sequence at each position of the provided search
window, which is referred as candidate string.

Some more helper data structures are also initialized.

1. coverage vector: This keeps the total reads that appear at each position across the search
window.

2. snp count, insert count, delete count: Auxiliary vectors that keep track of variant count
at each base positions.

The pipeline first populates the nucleotide features across the search window, marked green in
Figure 4.2, by calling the function encode reference bases. Rest of the features of the image
matrix are filled in the populate summary matrix function. It is called for each read, and for
each CIGAR within that read, the correspoding feature vector is updated. For each mismatch,
insertion or deletion, a candidate string is created.

1. For SNPs, the candidate string is just the base that differs, prefixed with ‘1’ to be used as
a label later.

2. For insertions, the candidate string is the inserted sequence in the read, prefixed with ‘2’.

3. For deletions, the candidate string is the reference sequence that spans across the deletion,
prefixed with ‘3’.

The candidate string frequencies are incremented in the AlleleFrequencyMap, AlleleFrequen-
cyMapFwdStrand, AlleleFrequencyMapRevStrand at position where they occur. The candidate
string themselved are also inserted in AlleleMap. Since each position in those data structure is
a hashmap, only the unique candidate strings are stored. So in summary, the frequency maps
keep track of how many times that candidate string appears at that occurence position, while
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the AlleleMap keeps the list of unique candidate strings at any given position. After the reads
are processed, we have marked potential candidate positions or the variant breakpoints in each
data structures. It then goes through some checks against some predefined thresholds (whether
a variant passes the frequency threshold), and the corresponding potential variant positions are
inserted into a vector if they pass the checks. There, the genotype label is inferred for that
position according to the following rules:

• If both hp1 truth alleles and hp2 truth alleles contain that variant string, it is a homozy-
gous alternate and marked as ‘1/1’.

• If only one of them contain the variant string, it is marked as ‘0/1’ and is a heterozygous
variant.

• If none of them contain the variant string, the genotype is labeled as ‘0/0’.

Finally, the candidate variant is constructed by storing the candidate string, its genotype label
along with its pileup window. The pileup window is created as follows: Say a variant occurs at
position x. Then the variant window will span from x − 16 to x + 16. The features across the
window are the ones populated before. Finaly that candidate is saved into a data structure and
converted to a VCF record, along with an HDF5 file for further processing.

During the testing phase, we do not provide any ground truth VCF file, so all genotypes are
marked with ‘0/0’. Only the regions of interest are provided, and no padding is done in this
case. Other than that, all the processes are the same.

4.3 Modifications to the Original Pipeline

We noticed that the original method was not suitable to detect structural variants from the align-
ment file, since it was designed to detect SNPs and small indels. We propose the following
modifications to the original method to detect structural variants:

4.3.1 Deletion End Window

The original pipeline only finds breakpoints from the deletion start position. We propose that
for larger deletions, the deletion end position should also be considered for candidate variants.
This will help us to train our model more effectively so that it can detect both the start and end
positions of the deletion.

The process is depicted in Figure 4.5: assume the CIGAR string for a read is: 10M60D10M.
Normally, only the position just before the start of the deletion is recorded. To record the end
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Figure 4.5: Recording the end position of deletions in CIGAR string.

position as well, we insert a candidate allele at a position 60 bases away from the start of the
deletion. This way, both the start and end positions of the deletion are recorded. To differentiate
between the start and end positions, we prefix the candidate string with ‘E’.

4.3.2 Breakpoints from Soft Clip Reads

Some of the structural variants appear as soft clips in the alignment file. This is because when
a single sequencing read aligns to multiple locations in the reference genome, the aligner may
choose to split the read and align the parts separately. The parts of the read that match the refer-
ence genome are considered in the alignment, while the parts that don’t match are represented
as clips. We propose to detect these clips and use them to detect structural variants.

Figure 4.6: Variants represented by soft clipped regions in the alignment file.

Here, we provide examples for the deletion case on the left and insertion case on the right. For
deletions, the clipped reads are spread apart creating a gap in between them, which is the deleted
region. For insertions, the clipped reads are close together and create an interleaving pattern as
shown in the figure. Although the length of the deletion can sometimes be inferred from the gap
between the clipped reads, the length of the inserted sequence is difficult to determine from the
clipped reads alone.
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Since the variant category is not evident from the clipped reads, we label these variants using
the ground truth labels during training, and as insertions (arbitrarily assigned) during testing.
The final category of these variants are determined by the LSTM model. During training mode,
the labels from these soft clipped reads are assigned to the nearest ground truth variant within a
certain distance. This is because the clipped reads may not always align to the exact position of
the variant. This approach is similar to the one used for handling shifted labels in Section 4.3.4.

4.3.3 Variant Consolidation

Figure 4.7: Scattered deletions in repetitive regions.

SNVs and small indels are usually aligned properly within the alignment file, and the pipeline
can detect them accurately. However, structural variants often shift out of alignment and tend to
sparse themselves in the alignment file, specially in repetitive regions, as shown in Figure 4.7.
This causes multiple variants to be detected in the same region, hence giving rise to false pos-
itives during benchmarking. In the worst case, the misalignment may cause the support count
to fall below the required threshold, and the variant may not be detected at all, as shown in
Figure 4.8. We propose to consolidate these variants based on the normalized indel similarity
score. This scoring system gives us the flexibility to search a larger region for similar variants
and consolidate them, while still keeping the dissimilar variants separate. The normalized indel
similarity score is calculated as follows:

D = α · nmis + β · nins + γ · ndel

Dnorm =
D

L1 + L2

Snorm = 1−Dnorm

(4.1)

First, the Levenshtein distance between the two candidate variant strings are calculate with mis-
match, insertion and deletion penalty as α = 2, β = 1 and γ = 1 respectively. The normalized
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distance Dnorm is calculated by dividing the distance by the sum of the lengths of the two strings.
The normalized similarity score Snorm is calculated by subtracting the normalized distance from
1. This gives a similarity score between 0 and 1, where 1 indicates that the two strings are
identical and 0 indicates that they are completely different. For deletions, we propose that
scores above 0.7 should be considered as similar and consolidated, while for insertions, scores
above 0.9 should be considered as similar and consolidated. This threshold was determined
empirically by analyzing the similarity scores of the variants in the ground truth variant dataset.
By consolidating similar variants, we can increase the support count of the variant and hence
improve the detection accuracy.

Figure 4.8: Variant support before and after consolidation.

4.3.4 Handle Shift in Labels

During training mode, we take the ground truth labels from a given VCF file. However, since
SVs tend to shift out of alignment, the labels may not always appear in the same region as the
detected variants. We propose to fix the genotype labels for shifted variants by searching for
the nearest ground truth variant within a certain distance. We take a window of 500 bases and
search for the nearest ground truth label in that window. If a ground truth label is found, and the
variant under consideration is within 30% of the length of the ground truth variant, we assign
the label of the ground truth variant to the detected variant.

4.3.5 Miscellaneous

Apart from the above modifications, we also propose the following changes to the original
pipeline to improve detection of structural variants:

• Increase the window size for searching for candidate variants from 32 to 128 bases.

• Increase the ground truth region padding from 100 to 300 bases.

• Add two new features to the image matrix: soft clip support for the forward and reverse
strands.

• Separately train two identical models for predicting the genotype and variant category
respectively.
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4.4 Variants from Soft Clipped Regions

One of our novel approaches in SV detection is the inclusion of indels from soft clipped regions.
As illustrated in Figure 4.9, the alignment can sometime misrepresent a deletion as a soft clipped
region (Figure 4.9a) or an insertion as a soft clipped region (Figure 4.9b). In this section, we
will discuss how we handle variants from soft clipped regions during both model training and
prediction.

(a) Misrepresentation of Deletion (b) Misrepresentation of Insertion

Figure 4.9: Misrepresentation of Indels as soft clipped region.

4.4.1 Training with Indels from Soft Clipped Regions

To train our model with the indels from the soft clipped regions, we follow a detailed process.
Firstly, as shown in Figure 4.10, we take a small window around the soft clipped region and
take the category information from the truth file.

(a) Deletion case (b) Insertion case

Figure 4.10: Getting the category of Indels in soft clipped region.

After getting the variants, we take another small window around the soft clipped region as
shown in Figure 4.11. Then all the variants within the small window are consolidated to the
first variant.

(a) Deletion case (b) Insertion case

Figure 4.11: Consolidating the Indels in soft clipped region.
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Finally, the variant matrix at the soft clipped region is generated accordingly, as shown in Figure
4.12.

(a) Deletion case (b) Insertion case

Figure 4.12: Getting the variant matrix at the soft clipped region.

4.4.2 Predicting Indels from Soft Clipped Regions

During prediction, we face a challenge at the soft clipped regions. It is not possible to categorize
these regions as insertion or deletion accurately from the aligned reads.

To address this, we give a generic category, in this case insertion, to these variants to pass them
to our model. To do so, we first take the sequence from the soft clipped reads, shown in green in
Figure 4.13, and set the category to insertion. The variants identified from this step are depicted
in Figure 4.14.

(a) Deletion case (b) Insertion case

Figure 4.13: Getting the read sequence (in green) from the soft clipped region.

(a) Deletion case (b) Insertion case

Figure 4.14: Variants as Insertion from the soft clipped region.

Then, the variants are consolidated by taking a small window as shown in Figure 4.15.

(a) Deletion case (b) Insertion case

Figure 4.15: Variant consolidation in the soft clipped region.
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Finally, the variant matrix is generated accordingly at the soft clipped region, as highlighted in
Figure 4.16.

(a) Deletion case (b) Insertion case

Figure 4.16: Variant matrix generation at the soft clipped region.

4.5 Model Training

Once we have successfully identified and consolidated the breakpoints from the alignment file,
we generate pileup matrices around these breakpoints.

Figure 4.17: Generating the pileup summary matrix.

Each of these matrices are generated by keeping the breakpoint at the center of the matrix and
the surrounding bases are padded with a 64 base context, which gives us a window size of
128 bases. These matrices integrate initial features from the existing pipeline, which includes:
variant support counts, variant length, reference base encoding, read base encoding and read
depth, both for forward and reverse strands. Additionally, we enrich the feature set with two
new features that help capture the soft-clip signatures within each read, totaling a set of 28
features. The pileup matrix is then passed to the LSTM model for training.

Figure 4.18: Training the LSTM model.
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In our pipeline, we train two identical models: one for predicting the genotype and the other
for predicting the variant category. The model consisted of an LSTM encoder, followed by
and LSTM decoder, followed by 5 layers of fully connected layers and dropout. A schematic
diagram is given in Figure 4.19.

Figure 4.19: Flow diagram of the LSTM model architecture.

A total of 16,492 labeled pileup matrices were generated for training. Each of the matrices are
of size 128x28. We split the dataset into approximately 80% training and 20% validation. We
used the Adam optimizer with a learning rate of 0.0001 and a batch size of 32. The model was
trained for 100 epochs on a NVIDIA Tesla P100 GPU, and the training took approximately 20
minutes.

4.6 Variant Prediction and Benchmarking

Figure 4.20: Overview of the final prediction and VCF creation step.

Once we have trained the model, we use it to predict the genotype and variant category of the
pileup matrices generated from the alignment file. Since the lengths of the variants are not evi-
dent from the soft-clipped reads, we keep the length limited to 30 base pairs to distinguish them
from the other variants. Finally, we output the variants in a VCF format. We then benchmark
the predicted variants against the ground truth variants using the Truvari tool. We calculate the
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precision, recall and F1 score against four competing methodologies: Delly, Dysgu, CuteSV,
Sniffles. The results are discussed in Chapter 6.

A brief overview of the final steps are shown in Figure 4.20. Before compiling the VCF file, we
run a post-processing step to filter out the false positives. Since majority of the false positives
resulted from the soft clip regions, we propose to filter out variants from soft clips that are
within 50 base pairs of an actual variant. This step helps reduce the number of false positives in
the final VCF file.



Chapter 5

Data Collection

5.1 Dataset

5.1.1 Alignment File

We use HG002 35x HiFi 2 GRCh37 dataset as the alignment file in this study. Key details of
the alignment file are as follows.

• HG002: This is a human genome sample sourced from the Genome in a Bottle (GIAB)
project. The GIAB project aims to provide high-quality reference materials and datasets
to support accurate and reproducible genome sequencing.

• Read Generation: The reads are generated using PacBio HiFi (High-Fidelity) sequenc-
ing technology. HiFi sequencing is known for its high accuracy and long read lengths,
making it suitable for detecting structural variants.

• Alignment: The reads are aligned using minimap2 with 35x coverage. It is a versatile and
efficient sequence alignment tool widely used for mapping high-throughput sequencing
reads to reference genomes.

5.1.2 Reference Genome

We use Genome Reference Consortium Human Build 37 (GRCh37) as the reference genome in
this study. This is a specific version of the human reference genome, released in February 2009.
GRCh37 has been widely used as a standard reference in genomic studies. Key details of the
reference genome are as follows.
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• Improved Coverage and Accuracy: Fewer gaps, more contiguous sequences.

• Detailed Annotations: Comprehensive gene models and functional descriptions.

• Structural Variants: Information on insertions, deletions, duplications, and inversions.

• Alternative Loci: Different versions of highly variable regions, enhancing genetic diver-
sity representation.

• Characterized Repeat Regions: Better handling of repetitive sequences.

5.2 Benchmark Files

In this section, we provide detailed information about the benchmark files used in this study.
These benchmarks are essential for evaluating the performance of our structural variant (SV)
caller, PEPPER-SV.

5.2.1 HG002 Tier 1 Benchmark

The HG002 Tier 1 benchmark is a high-confidence set of structural variant calls within the
HG002 genome [87]. This benchmark focuses on the most reliable and well-characterized
regions of the HG002 genome, ensuring robust and accurate assessments. These regions are
meticulously curated to provide a reliable standard for evaluating SV detection tools.

• Coverage and Variants: The HG002 Tier 1 benchmark spans 2.51 Gbp and includes
5,262 insertions and 4,095 deletions.

• Extensive Validation: Variants within Tier 1 regions are validated using a comprehensive
approach that includes short-read, long-read, and linked-read sequencing. This multi-
platform validation ensures high accuracy and confidence in the benchmark data.

• Version: In this study, we use version 0.6 of the HG002 Tier 1 benchmark.

5.2.2 CMRG Benchmark

The CMRG (Curated Medically Relevant Genes) benchmark is a standard set of genetic variants
for challenging, medically relevant genes, as described by Wagner et al. [88]. It is designed to
evaluate the performance of SV callers in complex genomic regions.
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• Coverage of Medically Relevant Genes: The CMRG benchmark characterizes 273 out
of 395 challenging medically relevant genes, focusing on repetitive and complex regions.

• Variants Reported: The CMRG benchmark reports over 17,000 single nucleotide vari-
ants (SNVs), 3,600 insertions and deletions (indels), and 200 other structural variants
(SVs) for the human genome reference GRCh37 across HG002.

• Version: In this study, we use version 1.0 of the CMRG benchmark.

5.3 Benchmarking Tool

5.3.1 Truvari

We use Truvari [89] as the toolkit for benchmarking the structural variant calls in Variant Call
Format (VCF) files. Truvari compares two VCF files to provide performance metrics, including
the following.

• True Positive, False Positive, and False Negative counts

• Precision

• Recall

• F1 Score

In this study, we use version 4.2.0 of Truvari.



Chapter 6

Results and Discussion

6.1 Impact of the Model on Structural Variant Detection

In this section, we present the impact of the model on structural variant (SV) detection in our
SV caller tool, PEPPER-SV. We assess performance in two cases:

• Performance of SV detection without further refinement using the LSTM-based model.

• Performance of SV detection with further refinement using the LSTM-based model.

6.1.1 Performance in HG002 Tier1 Benchmark

Figure 6.1a shows the comparison of performance metrics with and without the refinement of
the variant categories through the model on the HG002 Tier1 benchmark.

(a) HG002 Tier1 benchmark (b) CMRG benchmark

Figure 6.1: Comparison of performance with and without LSTM-based model refinement.
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The results indicate a notable increase in all three metrics (Recall, Precision, and F1 Score)
following the enhancement of the variants by the model, represented in blue. Specifically, the
Recall improved from 97.47% to 98.73%, the Precision increased from 89.74% to 94.67%, and
the F1 score rose from 93.44% to 96.66%.

6.1.2 HG002 CMRG Benchmark

Figure 6.1b presents the performance comparison for the HG002 CMRG benchmark. The cor-
rection of the variant categories by the model has a notable positive impact on performance
metrics for this benchmark as well. The Recall value rises from 97.04% to 99.51%. There is
a substantial increase in Precision, as it improves from 90.91% to 98.24%, reflecting a higher
accuracy in distinguishing true positives from false positives. Finally, the F1 Score, which is the
harmonic mean of Recall and Precision, shows a marked improvement from 93.88% to 98.87%.
This demonstrates that the model achieves a more balanced and effective performance overall
in detecting structural variants.

6.2 Comparison with Other SV Callers

In this section, we compare the performance of PEPPER-SV with other SV callers, namely
Sniffles, CuteSV, Delly, and Dysgu. The benchmarking is conducted on Chromosomes 15-22,
which were not included in the training dataset.

6.2.1 SV Callers Used for Comparison

Figure 6.2 provides a visual representation of the SV callers used for comparison. Here, Snif-
fles, CuteSV, and Delly are based on traditional algorithms, whereas Dysgu utilizes a machine
learning approach for SV calling.

Figure 6.2: SV callers used for comparison.
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6.2.2 Comparison of SV Tools in the HG002 Tier 1 Benchmark

Comparison of Recall

The Recall values for each SV caller in the HG002 Tier 1 benchmark are shown in Figure 6.3.

Figure 6.3: Comparison of SV tools in recall values for the HG002 Tier 1 benchmark.

As shown in Figure 6.3, PEPPER-SV demonstrates superior performance in Recall compared to
other SV callers such as Sniffles, CuteSV, Delly, and Dysgu. PEPPER-SV achieves the highest
Recall value among the evaluated tools, with 98.73%, indicating its effectiveness in correctly
identifying true structural variants in the HG002 Tier 1 benchmark.

Comparison of Precision

Figure 6.4 presents the Precision values for each SV caller in the HG002 Tier 1 benchmark.

Figure 6.4: Comparison of SV tools in precision values for the HG002 Tier 1 benchmark.
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In the Tier 1 benchmark, PEPPER-SV’s Precision is slightly lower compared to the other tools,
as depicted in Figure 6.4. Despite this, PEPPER-SV still demonstrates reliable precision in
identifying true positives while maintaining a low false positive rate.

Comparison of F1 Score

Finally, the F1 Scores for each SV caller in the HG002 Tier 1 benchmark are compared in
Figure 6.5.

Figure 6.5: Comparison of SV tools in F1 score values for the HG002 Tier 1 benchmark.

As illustrated in Figure 6.5, PEPPER-SV achieves a competitive F1 Score in the Tier 1 bench-
mark, reflecting its balanced performance in both Recall and Precision. Specifically, the F1
Score for PEPPER-SV is 96.66%, which outperforms Sniffles with an F1 Score of 96.28% and
Delly with an F1 Score of 96.55%. This showcases PEPPER-SV’s overall effectiveness and
robustness in SV detection.

6.2.3 Comparison of SV Tools in the CMRG Benchmark

Comparison of Recall

The Recall values for each SV caller in the CMRG benchmark are compared in Figure 6.6.
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Figure 6.6: Comparison of SV tools in recall values for the CMRG benchmark.

Figure 6.6 shows that PEPPER-SV outperforms all other SV callers in terms of Recall in the
CMRG benchmark. With the highest Recall value of 99.51%, PEPPER-SV demonstrates its ca-
pability to accurately detect a larger proportion of true structural variants in complex medically
challenging regions, reducing the number of false negatives.

Comparison of Precision

Figure 6.7 presents the Precision values for each SV caller in the CMRG benchmark.

Figure 6.7: Comparison of SV tools in precision values for the CMRG benchmark.

As depicted in Figure 6.7, PEPPER-SV exhibits comparable performance with other SV callers
in terms of Precision in the CMRG benchmark. This indicates that PEPPER-SV effectively
identifies true positives while keeping false positives to a minimum.
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Comparison of F1 Score

Finally, the F1 Scores for each SV caller in the CMRG benchmark are compared in Figure 6.8.

Figure 6.8: Comparison of SV tools in F1 score values for the CMRG benchmark.

Figure 6.8 illustrates that PEPPER-SV achieves the highest F1 Score in the CMRG benchmark,
outperforming all other evaluated tools. This result signifies that PEPPER-SV provides a supe-
rior balance of Precision and Recall, making it an effective tool for SV detection in complex
medically challenging genomic regions.

6.3 Discussion

The detailed comparison of SV tools in both the HG002 Tier 1 and CMRG benchmarks high-
lights the robustness and effectiveness of PEPPER-SV. The LSTM-based model significantly
enhances the performance metrics of Recall, Precision, and F1 Score. Compared to other state-
of-the-art SV callers, PEPPER-SV consistently demonstrates excellent performance in terms
of Recall and F1 Score metrics. The high Recall indicates that our tool is highly effective at
identifying true structural variants, while the high F1 Score shows a good balance between
Precision and Recall, ensuring reliable overall performance. Our method demonstrates strong
performance in both challenging and complex genomic regions, as evidenced by the CMRG
benchmark results. However, there remains potential for improvement in the Precision metric.

Overall, PEPPER-SV stands out as a robust and reliable tool for structural variant detection,
offering significant advancements in performance, with ongoing refinements poised to enhance
its precision further.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we have introduced PEPPER-SV, a novel deep learning-based structural variant
(SV) caller. Our approach is unique in its use of a deep learning model to consolidate variants
based on normalized indel similarity, ensuring that dissimilar variants remain separate while
merging similar ones. This method has significantly improved the recall value, making our
tool highly effective at identifying true structural variants. One of the distinctive capabilities of
PEPPER-SV is the detection of additional breakpoints from soft clipped reads, which signifi-
cantly boosts its overall performance.

Despite PEPPER-SV consistently demonstrating excellent performance in terms of Recall and
F1 Score metrics, the Precision metric reveals there is room for improvement. We have identi-
fied several limitations and challenges that, if addressed, could enhance the overall performance.

7.2 Limitations and Challenges

We acknowledge that there are several limitations and challenges that need to be addressed
to further refine and optimize PEPPER-SV, ensuring its maximum effectiveness in structural
variant detection.

7.2.1 Fragmented Deletions

Fragmented deletions refer to the phenomenon where the actual deletion is split into smaller
parts. As illustrated in Figure 7.1, if each of the fragmented parts is less than 50 base pairs, they
fall below the necessary threshold and get excluded. Only variants greater than 50 base pairs
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are considered structural variants. As a result, we cannot detect these fragmented deletions. To
address this limitation, we need to develop a method to merge the signatures of these smaller
variants from the alignment file.

Figure 7.1: Fragmented deletion scenario: the deletion is split into parts smaller than 50 base
pairs, which falls below the threshold.

7.2.2 Window Size Limitation

Misclassifications can occur due to the limitations of our window size. As illustrated in Figure
7.2, to classify the insertion correctly, both soft clipped ends need to be captured within a single
window. However, due to the window size being limited, these ends are captured separately.

Figure 7.2: Window size limitation scenario: the two soft clipped ends are captured in separate
windows, leading to misclassification as a deletion instead of insertion.



7.3. FUTURE WORK 57

This separation of soft clipped ends makes it indistinguishable for the model from a typical
deletion case, resulting in a misclassification as a deletion. Increasing the window size to cap-
ture both ends within the same window is not a viable solution, as it may introduce null values
if the window exceeds the endpoints of the search region. Therefore, a better strategy is needed
to address this limitation. We need to train the model with improved techniques that can handle
such cases more effectively and enhance classification accuracy.

7.3 Future Work

Based on our findings and the identified limitations, we have outlined several key areas for
future work.

7.3.1 Addressing Limitations and Challenges

One of the primary objectives for future work is to address the current limitations and challenges
identified in our study. This includes developing methods to detect fragmented deletions by
merging the signatures of smaller variants and mitigating the misclassifications due to limited
window size. By overcoming these challenges, we can enhance the overall performance of
PEPPER-SV.

7.3.2 Training a CNN-Based Model

Another significant area for future research is the development and training of a Convolutional
Neural Network (CNN)-based model. From DeepVariant [4], we have seen that CNNs have
shown remarkable success in SNV detection. By leveraging the powerful feature extraction
capabilities of CNNs, we aim to improve the precision and robustness of structural variant
detection.

7.3.3 Incorporating Diverse Read Sequences

To enhance the robustness of PEPPER-SV, we plan to train the model with different types of
read sequences from various sequencing technologies and platforms. This includes incorporat-
ing data from short-read sequencing, long-read sequencing, and pair-end read sequences. By
training the model on a diverse set of read sequences, we can ensure that PEPPER-SV performs
well across different genomic datasets and is capable of handling a wide range of structural
variants.
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In conclusion, PEPPER-SV has demonstrated significant advancements in the field of structural
variant detection. With further development, we believe that PEPPER-SV can become an even
more powerful tool, providing highly accurate and reliable results in structural variant analysis.
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