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Abstract—The exploration of structural variations (SVs) in the
genome is pivotal for understanding genetic diversity and disease
mechanisms. However, the inherent complexity of structural
variants poses considerable challenges for accurate detection,
particularly with traditional short-read sequencing technologies.
Long-read sequencing has emerged as a promising alternative,
offering enhanced resolution and the ability to span larger
genomic regions. In this study, we introduce a novel deep
learning-enhanced methodology that builds upon the PEPPER-
Margin-DeepVariant framework, specifically tailored for the
detection of structural variants using long-read sequencing data.
Our approach represents the first-of-its-kind integration of deep
learning for the detection of structural variants. By clustering
similar structural variants based on normalized indel similarity
score and analyzing soft clips within alignment files, we enhance
the detection signals for structural variants that are often missed
by conventional methods. We evaluate our methodology against
state-of-the-art SV calling methods in the Challenging Medically
Relevant Genes (CMRG) and HG002 Tierl Benchmark datasets,
demonstrating superior performance with an F1 score of 98.87 %
on the CMRG dataset, and a highly competitive F1 score of
96.66% on the HG002 dataset.

Index Terms—structural variants, deep learning, long-read
sequencing, variant detection, genomics, levenshtein distance

I. INTRODUCTION

The human genome, comprising approximately 3 billion
base pairs, encodes between 20,000 and 25,000 genes and
harbors millions of genetic variations [1]. These variations
profoundly affect gene expression and function. While single
nucleotide variations (SNVs) and small indels are prevalent,
with over 100 million identified to date, structural variations
(SVs) impact a much larger portion of the genome than SNVs
and small indels combined [2].

Structural variants are also linked to several fatal diseases,
including amyotrophic lateral sclerosis (ALS), Alzheimer’s,
chronic myeloid leukemia (CML), and various forms of cancer
[3]. However, detecting SVs remains a formidable challenge.
Many SVs are located in poorly mapped regions of the
genome, and larger SVs often span multiple sequencing reads.
Additionally, in highly repetitive regions, SVs tend to disperse,
weakening detection signals and often causing many variants
to go undetected. Traditional short-read sequencing technolo-
gies often fail to map these complex regions uniquely, but
recent advances in long-read sequencing methods like Pacific
Biosciences and Oxford Nanopore Technologies (ONT) are
showing promise in this area.
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Aiming to address these challenges, we present PEPPER-
SV, an extension of the PEPPER-Margin-DeepVariant [35]
framework for detecting structural variants. Some of the key
contributions include:

1) Our approach represents the first-of-its-kind integration
of deep learning techniques specifically designed for SV
detection.

2) We consolidate similar variants within repetitive regions
using a normalized indel similarity score (IJ.

3) We utilize soft-clipped reads to extract SV signals,
which are often overlooked in traditional analyses.

PEPPER-SV utilizes long-read sequencing data and merges
these sophisticated techniques to provide a robust and depend-
able tool for SV identification.

II. RELATED WORKS

In the field of genomics, considerable progress has been
made in developing tools for detecting genetic variants. For
SNVs and small indels, deep learning-based tools like Deep-
Variant [4] and PEPPER-Margin-DeepVariant [5]] have shown
exceptional performance, particularly with long-read sequenc-
ing data, outperforming traditional methods. However, the
detection of SVs has largely relied on algorithmic approaches
such as CuteSV [6]], Delly [7], and Sniffles [8]]. Only recently
has the landscape begun to change with the introduction of
Dysgu [9]], a tool that enhances SV detection by analyzing
alignment gaps, discordant and supplementary mappings, and
utilizing machine learning for classifying variants.

Despite these advancements, the specific application of
deep learning to SV calling has remained largely unexplored.
Motivated by the success of PEPPER-Margin-DeepVariant,
we adapt its framework to develop a novel deep learning-
based pipeline tailored for robust and efficient detection of
structural variants. Our method aims to bridge the gap in the
current toolkit, aiming to overcome the existing limitations
and enhance the SV detection in long-read sequencing data.

III. METHODOLOGY
A. Variant Breakpoint Detection

Our pipeline begins by processing an input alignment file,
which it divides into multiple smaller, manageable windows
for concurrent analysis. Within each window, we examine
potential SV breakpoints by interpreting the signatures present
in the alignment information, represented by a string. We



specifically focus on insertions and deletions, which can ap-
pear either with their own signatures or with soft-clipped reads,
and track the total variant support count across all reads base
by base. If the support count exceeds a pre-defined threshold,
that position is identified as a candidate variant breakpoint.

B. Consolidation of Similar Variants

In regions where SVs are sparsely distributed, the support
counts may fall below the necessary threshold for reliable
detection. To counteract this, we consolidate similar candidate
SVs using a metric known as the normalized indel similarity
score (I). This is calculated by taking the Levenshtein distance
between two candidate variants, normalizing it, and then taking
the complement to get a similarity score between 0 and 1.
Here, we use « = 2,8 = 1, = 1 as mismatch, insertion and
deletion penalty consecutively. L1, Ly represents the length of
the two variants under consideration.

a'“mis"’ﬂ'”ins""}“”del
L1+ L

Snorm =1- (1)
This scoring system ensures that dissimilar variants are kept
separate while similar variants are merged together.

C. Matrix Generation

Following the identification and consolidation of these
breakpoints, our pipeline constructs a pileup summary ma-
trix for each candidate variant. We position each breakpoint
centrally within the matrix, accompanied by a 64-base wide
context window on either side, resulting in a 128-base window
around the breakpoint. This matrix integrates initial features
from the existing pipeline, which includes: variant support
counts, variant length, reference base encoding, read base
encoding and read depth, both for forward and reverse strands.
Additionally, we enrich the feature set with two novel features
that help capture the soft-clip signatures within each read,
totaling a set of 28 features.

D. Variant Category Prediction

To classify and predict the characteristics of these variants,
we train two LSTM models: one focused on determining the
variant category and the other on predicting the genotype from
the pileup matrices. These models leverage the deep learning
capabilities to refine the accuracy of variant categorization.
Finally, the results are compiled and output in the VCF
(Variant Call Format) file format, providing a detailed and
actionable list of identified variants.

TABLE 1
IMPACT OF MODEL ON PERFORMANCE OUTCOMES.
Benchmark Analysis Type  Precision Recall F1 Score
. Without Model 89.74% 97.47% 93.44%
HGO02 Tier 1 (i Model 94.67%  98.73%  96.66%
CMRG Without Model 90.91% 97.04% 93.88%
With Model 98.24% 99.51% 98.87%

TABLE 11
PERFORMANCE ON HG002 TIER 1 BENCHMARK DATASET.
Method Precision Recall F1 Score
Dysgu 96.04% 98.05% 97.04%
CuteSV 95.81% 98.20% 96.99%
PEPPER-SV 94.67% 98.73% 96.66%
Delly 96.26% 96.83% 96.55%
Sniffles 95.97% 96.59% 96.28%
TABLE III
PERFORMANCE ON CMRG SV BENCHMARK DATASET.
Method Precision Recall F1 Score
PEPPER-SV 98.24% 99.51% 98.87%
Dysgu 98.91% 98.52% 98.72%
Sniffles 98.41% 99.01% 98.71%
Delly 98.90% 98.03% 98.46%
CuteSV 98.40% 97.54% 97.96%

IV. MAIN RESULTS

We evaluate our results on HG002 PacBio HiFi sequence
data aligned against GRCh37 reference genome. As demon-
strated in Table [I, our model profoundly enhances both pre-
cision and recall. Performance benchmarks sorted in non-
decreasing order of F1 score are presented on Table |lI| and
Table Specifically, on the HG002 Tier 1 SV benchmark
dataset, our approach achieved an F1 score of 96.66%, out-
performing Delly and Sniffles. Furthermore, on the CMRG SV
benchmark dataset, our model achieved an F1 score of 98.87%,
outperforming all competing methodologies. These results
highlight the effectiveness of our approach, establishing a new
paradigm in structural variant calling using deep learning.
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